Manonmaniam Sundaranar University Department of Chemistry

M. Sc. Chemistry

Syllabus For the academic Year 2023-2024

CONTENTS

1.	Preamble
2.	Template for PG Programme in Chemistry
3.	Structure of M. Sc. Chemistry Program
4.	Different Types of Courses
5.	Elective Courses (ED from other Department Experts)
6.	Syllabus
7.	Skill Enhancement Courses

Value Added Courses

8.

	LATIONS ON LEARNING OUTCOMES-BASED CURRICULUM MEWORK FOR POSTGRADUATE EDUCATION
Programme	M. Sc. Chemistry
Programme Code	
Duration	PG – 2 YEARS
Programme	PO1: Problem Solving Skill
Outcomes (POs)	Apply knowledge of Management theories and Human Resource practices to solve business problems through research in Global context. PO2: Decision Making Skill Foster analytical and critical thinking abilities for data-based decision-making.
	PO3: Ethical Value Ability to incorporate quality, ethical and legal value-based perspectives to all organizational activities.
	PO4: Communication Skill Ability to develop communication, managerial and interpersonal skills.
	PO5: Individual and Team Leadership Skill Capability to lead themselves and the team to achieve organizational goals. PO6: Employability Skill Inculcate contemporary business practices to enhance employability skills in the competitive environment.
	PO7: Entrepreneurial Skill Equip with skills and competencies to become an entrepreneur.
	PO8: Contribution to Society Succeed in career endeavors and contribute significantly to society.
	PO9 Multicultural competence Possess knowledge of the values and beliefs of multiple cultures and a global perspective.
	PO 10: Moral and ethical awareness/reasoning Ability to embrace moral/ethical values in conducting one's life.
Programme Specific Outcomes (PSOs)	PSO1 – Placement To prepare the students who will demonstrate respectful engagement with others' ideas, behaviors, beliefs and apply diverse frames of reference to decisions and actions.

PSO 2 - Entrepreneur

To create effective entrepreneurs by enhancing their critical thinking, problem solving, decision making and leadership skill that will facilitate startups and high potential organizations.

PSO3 – Research and Development

Design and implement HR systems and practices grounded in research that comply with employment laws, leading the organization towards growth and development.

PSO4 – Contribution to Business World

To produce employable, ethical and innovative professionals to sustain in the dynamic business world.

PSO 5 – Contribution to the Society

To contribute to the development of the society by collaborating with stakeholders for mutual benefit.

Template for P.G., Programmes

Semester -I	Credit	Hour s	Semester -II	Credit	Hours	Semester-III	Credit	Hours	Semester-IV	Credit	Hours
1.1. Core-I	5	7	2.1. Core- IV	5	6	3.1. Core-VII	5	6	4.1. Core-XI	5	6
1.2 Core- II	5	7	2.2 Core-V	5	6	3.2 Core- VIII	5	6	4.2 Core-XII	5	6
1.3 Core – III	4	6	2.3 Core – VI	4	6	3.3 Core – IX	5	6	4.3 Project with viva voce	7	10
1.4 Discipline Centric Elective -I	3	5	2.4 Discipline Centric Elective – III	3	4	3.4 Core – X	4	6	4.4Elective - VI (Industry / Entrepreneurs hip) 20% Theory 80% Practical	3	4
1.5 Generic Elective- II:	3	5	2.5 Generic Elective - IV:	3	4	3.5 Discipline Centric Elective - V	3	3	4.5 Skill Enhancement course / Professional Competency Skill	2	4
			2.6 MOOC/ NPTEL	2	4	3.6 MOOC/ NPTEL	2	3	4.6 Extension Activity	2	
						3.7 Internship/ Industrial Activity	2	-			
	20	30		22	30		26	30		23	30
					Total (Credit Points -91					

Course Structure of the M. Sc. Program 2023-2024

Sl. No.	Course Code	Papers	Title	Credits	Hrs/ Weel
Seme	ester I	·		•	
1		Core - I	Organic Reaction Mechanism-I	5	7
2		Core - II	Structure and Bonding in Inorganic Compounds	5	7
3		Core - III	Organic Chemistry Practical	4	6
4		Elective - I (Discipline Centric)	Pharmaceutical Chemistry (or) Nanomaterials and Nanotechnology	3	5
5		Elective - II (Generic)	Electrochemistry (or) Molecular Spectroscopy	3	5
				20	30
Seme	ester II				
6		Core - IV	Organic reaction mechanism-II	5	6
7		Core -V	Physical Chemistry-I	5	6
8		Core - VI	Inorganic Chemistry Practical	4	6
9		Elective – III Discipline Centric	Medicinal Chemistry (or) Green Chemistry	3	4
10	v				
11		Online Course	MOOCs /NPTEL	2	4
		Value Added Course	Dyes and Pigments	2 (extra)	2
				22	30
Seme	ester III			•	
12		Core-VII	Organic synthesis and Photochemistry	5	6
13		Core-VIII	Coordination Chemistry-I	5	6
14		Core – IX	Physical Chemistry Practical	4	6
15		Core – X	Analytical Instrumentation technique Practicals	4	6
16		Elective -V (Discipline Centric)	Pharmacognosy (or) Biomolecules and Heterocyclic Compounds	3	3
17		Online Course	MOOCs /NPTEL	2	3
18		Internship/ Industrial Activity	(Carried out in Summer Vacation at the end of I year – 30 hours)	2	-
		Value Added Course	Polymorphism and Drug Discovery / Green Energy and Fuels	2 (extra)	2
				25	30
Seme	ester IV				
19		Core-XI	Coordination Chemistry-II	5	6
20		Core-XII Physical Chemistry-II			
21		Project with viva voce	Core Project	7	10
22		Elective - VI (Industry/ Entrepreneurship) 20% Theory 80% Practical	Chemistry of Natural products (or) Polymer Chemistry	3	4
23		Skill Enhancement course/	Skill Enhancement Course (any one from	2	4
-		Professional Competency Skill	the list) (Practical based Paper)		
24		Extension Activity	Practical based activity	2	-
			Ž	24	30
	•	Total Credit I	Points	91 (/95)	

Credit Distribution for PG Programme in Chemistry

	First Year Semester-I	Credit	Hours per week (L/T/P)
Part A	CC1 – Organic Reaction Mechanism-I	5	7
	CC2 – Structure and Bonding in Inorganic Compounds	5	7
	CC3 – Organic Chemistry Practical	4	6
	Elective I (Generic / Discipline Specific) (One from Group A) Pharmaceutical Chemistry/Nanomaterials and Nanotechnology	3	5(4L + 1T)
	Elective II (Generic / Discipline Specific) (One from Group B) Electrochemistry/Molecular Spectroscopy	3	5(4L + 1T)
	Total	20	30

	Semester-II	Credit	Hours per
			week(L/T/P)
Part A	CC4 – Organic reaction mechanism-II	5	6
	CC5 – Physical Chemistry-I	5	6
	CC6 – Inorganic Chemistry Practical	4	6
	Elective III (Generic / Discipline Specific) (One from Group C)	3	4
	Medicinal Chemistry/Green Chemistry		
	Elective-IV (Computer / IT related) (One from Group D)	3	4
	Bio Inorganic Chemistry/Material Science		
Part B	Skill Enhancement Course -SEC 2 (One from Group G)	2	4
	Total	22	30

	Second Year - Semester-III	Credit	Hours per week(L/T/P)
Part A	CC7 – Organic synthesis and Photochemistry	5	6
	CC8 – Coordination Chemistry-I	5	6
	CC9 – Physical Chemistry Practical	5	6
	CC 10– Analytical Instrumentation technique Practicals	4	6
	Elective V (Generic / Discipline Specific) (One from Group E)	3	3
	Pharmacognosy and Phytochemistry		
Part B	Skill Enhancement Course -SEC 3: Professional Communication	2	4
	Skill -Term paper & Seminar presentation		
	Internship / Industrial Activity	2	
	(Carried out in Summer Vacation at the end of I year – 30 hours)		
	Total	26	30

	Semester-IV	Credit	Hours per
			week (L/T/P)
Part A	CC11–Coordination Chemistry-II	5	6
	CC12– Physical Chemistry-II	5	6
	Core Project with viva voce	7	10
	Elective VI (Generic / Discipline Specific) (One from Group F)	3	4
	Chemistry of Natural products/Polymer Chemistry		
Part B	Professional Competency Skill Enhancement	2	4
	CourseTraining for Competitive Examinations		
	• Chemistry for NET / UGC - CSIR/ SET / TRB		
	CompetitiveExaminations (2 hours)		
	• General Studies for UPSC / TNPSC / Other Competitive Examinations (2 hours)		
	OR Chemistry for Advanced Research Studies (4 hours)		
Part C	Extension Activity	1	
	Total	23	30

TOTAL CREDITS: 91

Elective Courses

Courses are grouped (Group A to Group F) so as to include topics from Pure Chemistry (PC), Applied Chemistry (AC) and Industrial Components (IC) like pharmaceutical industries, Polymer labs courses for flexibility of choice by the stakeholders / institutions.

Semester I: Elective I and Elective II

Elective I to be chosen from Group A and Elective II to be chosen from Group B

Group A: (PC/AC/IC)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology

Group B:(PC/AC/IC)

- 1. Electrochemistry
- 2. Molecular Spectroscopy

Semester II: Elective III & Elective IV

Elective III to be chosen from Group C and Elective IV to be chosen from Group D

Group C:(PC/AC/IC)

- 1. Medicinal Chemistry
- 2. Green Chemistry

Group D:(PC/AC/IC)

- 1. Bioinorganic Chemistry
- 2. Material Science

Semester III: Elective V

Elective V to be chosen from Group E.

Group E: (PC/AC/IC)

- 1. Pharmacognosy and Phytochemistry
- 2. Biomolecules and Heterocyclic compounds

Semester IV: Elective VI

Elective VI to be chosen from Group F.

Group F:(PC/AC/IC)

- 1. Chemistry of Natural products
- 2. Polymer Chemistry

Skill Enhancement Courses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders / institutions.

Group G (Skill Enhancement Courses) SEC: (Practical based paper)

- 1. Computational Chemistry
- 2. Preparation of Consumer products
- 3. Origin lab
- 4. Industrial Chemistry
- 5. Research Tools and Techniques

Value Added Courses

A wide variety of Value Added Courses which are conducted after class hours during semester II and III. These courses are conducted by experts to help students stand apart from the rest in the job market by adding further value to their resume. They are mostly independent to each type of the fields.

List of Value Added Course

- 1. Dyes and Pigments
- 2. Polymorphism and Drug Discovery
- 3. Green Energy and Fuels

2. Instructions for Course Transaction

Courses	Lecture	Tutorial	Lab Practice	Total
	Hrs	hrs		hrs
Core	75	15		90
Electives	75	15		90
ED	75	15		90
Lab Practice Courses	-	15	75	90
Project	20		70	90

3.1 Internal Assessment

Theory Course: For theory courses there shall be three tests conducted by the faculty concerned and the average of the best two can be taken as the Continuous Internal Assessment (CIA) for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

Computer Laboratory Courses: For Computer Laboratory Oriented Courses, there shall be two tests in Theory part and two tests in Laboratory part. Choose one best from Theory part and other best from the two Laboratory part. The average of the best two can be treated as the CIA for a maximum of 25 marks. The duration of each test shall be one / one and a half hour.

There is no improvement for CIA of both theory and laboratory, and, also for University EndSemester Examination.

Different Types of Courses

(i) Core Courses (Illustrative)

- 1. Organic Reaction mechanism I & II
- 2. Structure and bonding in Inorganic compounds
- 3. Organic Chemistry Practical
- 4. Physical Chemistry-I & II
- 5. Inorganic Chemistry Practical
- 6. Organic synthesis and Photochemistry
- 7. Coordination Chemistry-I & II
- 8. Physical Chemistry Practical
- 9. Analytical Instrumentation technique practical

(ii) Elective Courses (ED within the Department Experts) (Illustrative)

- 1. Pharmaceutical Chemistry
- 2. Nanomaterials and Nanotechnology
- 3. Electrochemistry
- 4. Molecular Spectroscopy
- 5. Medicinal Chemistry
- 6. Green Chemistry
- 7. Pharmacognosy and Phytochemistry
- 8. Biomolecules and Heterocyclic compounds
- 9. Bio inorganic Chemistry
- 10. Material Science
- 11. Chemistry of Natural products
- 12. Polymer chemistry

(iii) Skill Enhancement Courses (only internal component)

- 1. Computational Chemistry
- 2. Preparation of Consumer products
- 3. Origin lab
- 4. Industrial Chemistry
- 5. Research Tools and Techniques

	Methods of Evaluation						
	Continuous Internal Assessment Test						
Internal	Assignments	25 Marks					
Evaluation	Seminars	23 Warks					
	Attendance and Class Participation						
External	End Semester Examination	75 Marks					
Evaluation	End Schiester Examination	73 Warks					
	Total	100 Marks					
	Methods of Assessment						
Recall (K1)	Simple definitions, MCQ, Recall steps, Concept definitions.						
Understand/	MCQ, True/False, Short essays, Concept explanations, short summary or						
Comprehend	overview.	Aplanations, short summary of					
(K2)	OVELVIEW.						
Application	Suggest idea/concept with examples, sugg	gest formulae, solve problems,					
(K3)	Observe, Explain.						
Analyze (K4)	Problem-solving questions, finish a	procedure in many steps,					
Allalyze (IX4)	Differentiate between various ideas, Map knowledge.						
Evaluate	Evaluate Longer essay/ Evaluation essay, Critique or justify with pros and cons.						
(K5)	Longer essay, Evaluation essay, Critique e	or justing with pros and cons.					
Create (K6)	Check knowledge in specific or offbeat si	tuations, Discussion, Debating					
Create (IXU)	or Presentations.						

In order to avoid pull the score down of each PO, it is suggested that the usage L-Low (1) to the minimum.

The S, M, L is based on the course outcome. The mapping is based on the revised Bloom's Taxonomy Verbs used to describe your course outcome.

- Remember and Understanding Lower level
- Apply and Analyze Medium Level
- Evaluate and Create Strong Level

Title of the Course	ORGANIC REACTION MECHANISM - I						
Paper No.	Core I						
Category	Core	Year	I	Credits	5	Course	
Category	Corc	Semester	I	Credits		Code	
Instructional	Lecture	Tutorial		Practice		Total	
	6		Lai	Practice		7	
hours per week	O	1	-			/	
	Dogio cono	l note of openio	. ahan	istary			
Prerequisites		epts of organic				iana of manion	
Objectives of the course	reactions.	and the least	omity	and the m	ecnan	ism of variou	is organic
the course		ahand tha ta	ahnia	waa in tha	dat	amaination of	- manation
	_		ecnniq	ues in the	aet	ermination of	reaction
	mechanism			C . 1	. ,		
			cept (of stereoch	emisti	ry involved i	n organic
	compounds		1	1.00	. ,	1 1 1 1	. ,
					invo	lved in the var	ious types
		reaction mecha			41		· · · · · · · · · · · · · · · · · · ·
			unetic	routes fo	or the	e preparation	oi organic
C	compounds			·	D	·	D
Course						ion Mechanis	
Outline						on coordinate	•
	_			_		of reactions:	
	-			-		n: non-kinetic	
	*	•				es-isolation, de	· ·
	11 0					elling, isotope	
						- relation	
					-	ammett and Ta	-
		energy relation	onship	, partial rate	e facto	or, substituent	and reaction
	constants.						
				A 1º 1 4º	T21	4 1 1 11 6	7 1 4.4 4.
	UNIT-II:						Substitution:
						on-benzenoid,	
	_				_	lic substitution	
						phenol, nitro	
	halobenzene. Reactions involving nitrogen electrophiles: nitration, nitrosation and diazonium coupling; Sulphur electrophiles: sulphonation;						
	_	-				ation; Carbon	-
						ation reaction	
	_	c substitution	Mech	anısms: SE	2 and	SEi, SE1- Mo	echanism and
	evidences.						
			_		_	lic Substitutio	
	-					_N Ar, S _N 1 ar	•
				-		of structure, le	
						and Sulphur-1	-
						er, Sommelet-	
	Smiles rear	rrangements.	S_N1 ,	ion pair, S	$_{\rm N}2$ m	echanisms and	d evidences.
		ucleophilic su					
	7 Implication	acteopinite su	iostitu	nons at an	anync	carbon, ampi	iatic trigonal
	-	-			•	mechanism an	_

UNIT-IV: Stereochemistry-I: Introduction to molecular symmetry and chirality – axis, plane, center, alternating axis of symmetry. Optical isomerism due to asymmetric and dissymmetric molecules with C, N, S based chiral centers. Optical purity, prochirality, enantiotopic and diastereotopic atoms, groups, faces, axial and planar chirality, chirality due to helical shape, methods of determining theconfiguration. Racemic modifications: Racemization by thermal, anion, cation, reversible formation, epimerization, mutarotation. D, L system, Cram's and Prelog's rules: R, S-notations, proR, proS, side phase and re phase Cahn-Ingold-Prelog rules, absolute and relative configurations. Configurations of allenes, spiranes, biphenyls, cyclooctene, helicene, binaphthyls, ansa and cyclophanic compounds, exo-cyclic alkylidene-cycloalkanes. Topicity and prostereoisomerism, chiral shift reagents and chiral solvating reagents. Criteria for optical purity: Resolution of racemic modifications, asymmetric transformations. asymmetric synthesis, destruction. Stereoselective and stereospecific synthesis.

UNIT-V: Stereochemistry-II: Conformation and reactivity of acyclic systems, intramolecular rearrangements, neighbouring group participation, chemical consequence of conformational equilibrium - Curtin-Hammett Principle. Stability of five and six-membered rings: mono-, di- and polysubstituted cyclohexanes, conformation and reactivity in cyclohexane systems. Fused and bridged rings: bicyclic, poly cyclic systems, decalins and Brett's rule. Optical rotation and optical rotatory dispersion, conformational asymmetry, ORD curves, octant rule, configuration and conformation, Cotton effect, axial haloketone rule and determination of configuration.

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended Text

- 1. J. March and M. Smith, Advanced Organic Chemistry, 5th edition, John-Wiley and Sons.2001.
- 2. E. S. Gould, Mechanism and Structure in Organic Chemistry, Holt, Rinehart and Winston Inc., 1959.
- 3. P.S.Kalsi, Stereochemistry of carbon compounds, 8th edition, New Age International Publishers, 2015.
- 4. P. Y. Bruice, Organic Chemistry, 7th edn, Prentice Hall, 2013.
- 5. J.Clayden, N. Greeves, S. Warren, Organic Compounds, 2ndedition, Oxford University Press, 2014.

Reference	1. F.A. Carey and R.J. Sundberg, Advanced Organic Chemistry Part-						
Books	A and B, 5 th edition, Kluwer Academic / Plenum Publishers, 2007.						
	2. D. G. Morris, Stereochemistry, RSC Tutorial Chemistry Text 1,						
	2001.						
	3. N.S. Isaacs, Physical Organic Chemistry, ELBS, Longman, UK,						
	1987.						
	4. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata-McGraw						
	Hill, 2000.						
	5. I. L. Finar, Organic chemistry, Vol-1 & 2, 6 th edition, Pearson						
	Education Asia, 2004.						
Website and	1.https://sites.google.com/site/chemistryebookscollection02/home/organic-						
e-learning	<u>chemistry/organic</u>						
source	2. https://www.organic-chemistry.org/						

Students will be able

CO1: To recall the basic principles of organic chemistry.

CO2: To understand the formation and detection of reaction intermediates of organic reactions.

CO3: To predict the reaction mechanism of organic reactions and stereochemistry of organic compounds.

CO4: To apply the principles of kinetic and non-kinetic methods to determine the mechanism of reactions.

CO5: To design and synthesize new organic compounds by correlating the stereochemistry of organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

Strong - 3 Medium-2 Low-1

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	STRUCT	TURE AND	BO	NDING I	N INC	ORGANIC CO	OMPOUNDS			
Course	C									
Paper No.	Core II	Year	т	Cuadita	5	Course				
Category	Core	Semester 1	I	Credits	5	Course Code				
Instructional	Lecture	Tutorial	-	Practice		Total				
hours per week	6	1	Lai	Tractice		7				
Prerequisites President Pr	Basic concepts of Inorganic Chemistry									
Objectives of the		To determine the structural properties of main group compounds and								
course	clusters.									
		fundamenta	l kn	owledge (on th	e structural a	aspects of ionic			
	crystals.	Tanaamenta	i Kii	owieage	JII (II	e structurur t	ispects of fome			
	_	arize various	s diff	raction an	d mic	roscopic techn	niques			
						ne defects in io	-			
		te the struct					J			
Course Outline				-			d clusters: VB			
	theory –	Effect of lo	ne pa	ir and elec	trone	gativity of ato	ms (Bent's rule)			
	on the ge	eometry of t	the m	olecules;	Struc	ture of silicate	es - applications			
	of Paulin	ngs rule of	elec	ctrovalenc	e - i	isomorphous	replacements in			
		•				•	•			
		silicates – ortho, meta and pyro silicates – one dimensional, two dimensional and three-dimensional silicates. Structure of silicones,								
							,			
	Structural and bonding features of B-N, S-N and P-N compounds; Poly acids – types, examples and structures; Borane cluster: Structural									
	features of closo, nido, arachano and klado; carboranes, hetero and									
							f borane cluster;			
		up clusters -		-						
							acking of ions in			
				•		•	n crystal lattice,			
	_	-			-	•	metry operations			
	in crystal	s, glide pla	nes a	nd screw	axis;	point group a	and space group;			
							nde equation -			
		ski equation								
				•			res of the crystal			
	•						and anti-fluorite,			
							Spinels -normal Growth methods:			
		• •	_			•	ods) – principles			
	and exam		.1011		,	sor ger memo	principles			
		1	ues i	n solid s	tate	chemistry: X	-ray diffraction			
							- Principle and			
							OS files, Phase			
							on; Systematic			
						-	ue – principle,			
							y – difference			
	between	-		electron methods			ory, principle,			
	ınstrumer	itation, sam	pung	inetnoas a	and aj	opiications of S	SEM and TEM.			

Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	UNIT-V: Band theory and defects in solids Band theory – features and its application of conductors, insulators and semiconductors, Intrinsic and extrinsic semiconductors; Defects in crystals – point defects (Schottky, Frenkel, metal excess and metal deficient) and their effect on the electrical and optical property, laser and phosphors; Linear defects and its effects due to dislocations. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
	4. K. F. Purcell and J. C. Kotz, Inorganic Chemistry; W.B. Saunders
	company: Philadelphia, 1977.
	5. J. E. Huheey, E. A. Keiter and R. L. Keiter, Inorganic Chemistry; 4th ed.; Harper and Row: NewYork, 1983.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
Acterence Dours	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
	4. T. Moeller, Inorganic Chemistry, A Modern Introduction; John
	Wiley: New York, 1982.
	5. D. F. Shriver, P. W. Atkins and C.H. Langford; Inorganic
	Chemistry; 3rd ed.; Oxford University Press: London, 2001.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-chemistry-
e-learning source	fall-2018/video_galleries/lecture-videos/

Students will be able

CO1: Predict the geometry of main group compounds and clusters.

CO2: Explain about the packing of ions in crystals and apply the radius ratio rule to predict the coordination number of cations.

CO3: Understand the various types of ionic crystal systems and analyze their structural features.

CO4: Explain the crystal growth methods.

CO5: To understand the principles of diffraction techniques and microscopic techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3-Strong, 2-Medium, 1-Low

Title of the	ORGAN	IC CHEMI	STR	Y PRAC	ΓICA	L			
Course									
Paper No.	Core III								
Category	Core	Year	I	Credits	4	Course			
		Semester	I			Code			
Instructional	Lecture	Tutorial	Lal	Lab Practice		Total			
hours per week	-	1	5			6			
Prerequisites		ncepts of or							
Objectives of the	To under	To understand the concept of separation, qualitative analysis and							
course	preparation	paration of organic compounds.							
	To develo	op analytica	ıl sk	ill in the	hand	ling of chemic	cal reagents for		
		n of binary a					_		
	•	•					tematically and		
	_	them suital				-			
			•	erimental	setu	o for the orga	nic preparations		
		two stages.					1 1		
	To exper	iment diffe	rent	purification	on a	nd drying tec	hniques for the		
	compoun	d processing	5.						
Course Outline	UNIT-I: Separation and analysis:								
		o componen							
	B. Thro	ee compone	nt mi	xtures.					
	UNIT-II:	Estimation	s:						
	a) 1	Estimation o	of Pho	enol (brom	ninati	on)			
		Estimation o		,					
	· · · · · · · · · · · · · · · · · · ·			•		ne (iodimetry)			
	d) l	Estimation o	of Gl	icose (red	ox)				
	e) l	Estimation o	of As	corbic acid	l (iod	limetry)			
	f) 1	Estimation o	of Ar	omatic niti	o gro	oups (reduction	1)		
	g) l	Estimation o	of Gl	ycine (acid	limet	ry)			
		Estimation o				• /			
						ter (alkalimetr	y)		
	•	Estimation of	•			•			
	k) 1	Estimation o	of An	nino group	(ace	tylation)			
	IINIT-III	I: Two stag	o nro	narations					
	01411-111	i. I wo stag	c bre	paranons	•				
		-Bromoaceta							
		-Nitroanilin							
		3,5-Tribrom							
		cetyl salicyc			nethy	l salicylate			
	,	enzilic acid							
		-Nitroanilin				1			
	g) m	-Nitrobenzo	oic ac	ad from m	ethyl	benzoate			
	<u>,</u>								

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	,
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A R West, Solid state Chemistry and its applications, 2ndEdition
Text	(Students Edition), John Wiley & Sons Ltd., 2014.
	2. A K Bhagi and G R Chatwal, A textbook of inorganic polymers,
	Himalaya Publishing House, 2001.
	3. L Smart, E Moore, Solid State Chemistry – An Introduction, 4 th
	Edition, CRC Press, 2012.
Reference Books	1. D. E. Douglas, D.H. McDaniel and J. J. Alexander, Concepts and
	Models in Inorganic Chemistry, 3rd Ed, 1994.
	2. R J D Tilley, Understanding Solids - The Science of Materials, 2 nd
	edition, Wiley Publication, 2013.
	3. C N R Rao and J Gopalakrishnan, New Directions in Solid State
	Chemistry, 2 nd Edition, Cambridge University Press, 199.
Website and	https://ocw.mit.edu/courses/3-091-introduction-to-solid-state-
e-learning source	chemistry-fall-2018/video_galleries/lecture-videos/

Students will be able:

CO1: To recall the basic principles of organic separation, qualitative analysis and preparation.

CO2: To explain the method of separation and analysis of separated organic mixtures and convert them as derivatives by suitable preparation method.

CO3: To determine the characteristics of separation of organic compounds by various chemical reactions.

CO4: To develop strategies to separate, analyze and prepare organic compounds.

CO5: To formulate a method of separation, analysis of organic mixtures and design suitable procedure for organic preparations.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course	PHARM	ACEUTIC	AL C	CHEMIST	RY			
Paper No.	Elective 1							
Category	Elective	Year	I	Credits	3	Course		
omings-,		Semester	I			Code		
Instructional	Lecture	Tutorial		Practice	l	Total		
hours per week	4	1	_	Tractice		5		
Prerequisites	•	owledge on	drug	s and dos	es	3		
Objectives of the						harmaceutical	l chemistry	
course				-	-	ctions of variou	•	
course				•			· ·	
			to Ki	now the in	nport	ance as well t	the consequences	
	of various	_	n tha	. vorious o	nalva	is and technique	1100	
		_			•	structural activ		
Course Outline							ysical properties	
Course Outline							idex- Definition,	
							pecific & molar	
	-			-		-	& polychromatic	
				• .			tation examples,	
							ant & Induced	
							determination.	
					-	s: Introducti		
		-		•				
		Applications, concept of viscosity, Newton's law of flow, Kinematic, Relative, Specific, Reduced & Intrinsic viscosity. Newtonian system,						
	non-Newtonian system- Plastic flow, Pseudoplastic flow, Dilatent flow.							
	Viscosity	measureme	ents-	selection	of v	iscometer for	Newtonian and	
	non-New	tonian syste	m.					
	UNIT-II:	Isotopic	Dilu	tion ana	lysis	: principle a	and applications,	
	Neutron	activation	analy			advantages	and limitations,	
	Scintillati			•		\mathcal{C}	ntroduction to	
		maceuticals				of various		
						iticals as		
	_					-	emical Properties	
	_		•		-	-	ugs (a) Partition	
							of ionization.	
		_	_	_		_	: Introduction to	
	_	_		_			Definition of	
							pharmacopoeias	
						g nomenclati		
		ation of					a dosage form,	
			_		_	-	uct development.	
			_	-		_	ivery system –	
		of Comn					ion and control,	
	_	-				-	nenclature, routes	
		istration of			ρισαί	icis, need for	a dosage form,	
		ion of dosa			, Ar	uge. Introdu	ction, procedure	
		_				_	ounds, molecular	
	IOHOWEU	m drug de	oigii,	the reseal	C11 10	or icau compe	Julius, Illuleculal	

modification of lead compounds. Structure-Activity Relationship (SAR): Factors effecting bioactivity, resonance, inductive effect, isoterism, bioisosterism, spatial considerations, biological properties of simple functional groups, theories of drug activity, occupancy theory, rate theory, induced-fit theory,4.3 Quantitative structure (OSAR): Development of OSAR, receptor interactions, the additivity of group contributions, physico-chemical parameters, lipophilicity parameters, electronic parameter, ionization constants, steric parameters, chelation parameters, redox potential, indicator-variables. UNIT-V: Computers in Pharmaceutical Chemistry: Need of computers for chemistry. Computers for Analytical Chemists-Introduction to computers: Organization of computers, CPU, Computer memory, I/O devices, information storage, software components. Application of computers in chemistry: Programming in high level language (C+) to handle various numerical methods in chemistry least square fit, solution to simultaneous equations, interpolation, extrapolation, data smoothing, numerical differentiation integrations. Ouestions related to the above topics, from various competitive Extended examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Professional Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. 1. Physical Chemistry- Bahl and Tuli. Recommended 2. Text Book of Physical Pharmaceutics, IInd edition, Vallabh **Text** Prakashan-. C.V.S. Subramanyam. Medicinal Chemistry (Organic Pharmaceutical Chemistry), G.R. Chatwal, Himalaya Publishing house. 4. Instrumental method of Analysis: Hubert H, Willard, 7th edition. 5. Textbook of Pharmaceutical Chemistry by, Jayshree Ghosh, S. Chand & company Ltd. Pharmaceutical Chemistry by Dr. S. Lakshmi, Sultan chand & Sons. Reference Books 1. Computers in chemistry, K.V. Raman, Tata Mc.Graw-Hill, 1993. 2. Computers for Chemists, S.K Pundir, Anshu bansal, A pragate prakashan., 2 nd edition, New age international (P) limited, New Delhi. 3. Physical Pharmacy and Pharmaceutical Sciences by Martins, Patrick J. Sinko, Lippincott. William and Wilkins. Cooper and Gunn's Tutorial Pharmacy ,6th edition by S.J. 4. Carter, CBS Publisher Ltd. Ansels pharmaceutical Dosage forms and Drug Delivery 5.

System by Allen Popvich and Ansel, Indian edition-B.I. Publication
Pvt. Ltd.

Website and	https://www.ncbi.nlm.nih.gov/books/NBK482447/
e-learning source	https://training.seer.cancer.gov/treatment/chemotherapy/types.html

Students will be able:

CO1: To identify the suitable drugs for various diseases.

CO2: To apply the principles of various drug action and drug design.

CO3: To acquire the knowledge on product development based on SAR.

CO4: To apply the knowledge on applications of computers in chemistry.

CO5: To synthesize new drugs after understanding the concepts SAR.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	NANO M	IATERIAI	SAN	ND NANC) TE	CHNOLOGY				
Course										
Paper No.	Elective 1				1					
Category	Elective	Year	I	Credits	3	Course				
		Semester	I			Code				
Instructional	Lecture	Tutorial	Lat	Practice		Total				
hours per week	4	1 1 6	<u> </u>			5				
Prerequisites	Basic knowledge of crystallography and material science									
Objectives of the course	To understand the concept of nano materials and nano technology.									
course	To understand the various types of nano materials and their properties. To understand the applications of synthetically important nano									
			app	lications	01 8	synthetically i	important nano			
	materials.		octeri	etice of va	rione	nano materiale	s synthesized by			
	new techi		acterr	stics of va	110us	Hano materials	s synthesized by			
		-	outes	for synthe	etical	ly used new na	no materials.			
Course Outline	UNIT-I:	Introducti		of nanon		•	notechnologies,			
	Introducti	on-role of					3D. Synthesis-			
							ers. Features of			
						-	ues of synthesis			
			_			anoscience. A	•			
		rials and tec			. 116	moscience. 7	applications of			
					f tha	nonomotoriole	, Predicting the			
		Ū								
	* -	_				<u> </u>	cture. Metallic			
	-					-	and Properties.			
	-	=				=	ondensation, arc			
	_			_		<u>-</u>	othermal-CVD-			
		_		-			pressure CVD.			
		e assisted a								
							ries relevant to			
				-		-	al properties of			
	nanomate	•	esion		friction		properties of ides: silica, iron			
		alumina - s		_			ides: sinca, iron			
							d Resistivity,			
							netic properties,			
	electronic						of magnetic			
	phenome						Ge, Si, GaAs,			
							s p and n –type			
				_			Hall voltage -			
	interpreta		char	_		• •	plications of			
		-	•	ion as trai	nsisto	ors and rectifier	rs, photovoltaic			
	_	galvanic ce		monoco:::	ogit -	. Application -	f nononoutialas is			
				_		s. Application of es - types,	f nanoparticles in synthesis, and			
				-		• •	polymer-matrix			
							M and AFM -			
	-	instrument					711 111			
	I Principie,	mon ament	at1011	արթու						

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	(10 be discussed during the 1 deoral nodes)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S.Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6 th ed., PEARSON Press, 2007.
Reference Books	1. S.Mohan and V. Arjunan, Principles of Materials Science,
	MJP Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography,
	International Union of Crystallography. Oxford Science
	Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge
	University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara,
	Introduction to Materials Science for Engineers. 6 th ed., PEARSON
	Press, 2007.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html .
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf .
Course Learning C	Outcomes (for Mapping with POs and PSOs)

Students will be able:

CO1: To explain methods of fabricating nanostructures.

CO2: To relate the unique properties of nanomaterials to reduce dimensionality of the material.

CO3: To describe tools for properties of nanostructures.

CO4: To discuss applications of nanomaterials.

CO5: To understand the health and safety related to nanomaterial.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

	ELECTROCHEMISTRY									
Title of the										
Course										
Paper No.	Elective 1		1	T	1	1				
Category	Elective	Year	I	Credits	3	Course				
		Semester	I			Code				
Instructional	Lecture	Tutorial	Lal	Practice	!	Total				
hours per week	4	1	-			5				
Prerequisites	Basic knowledge of electrochemistry									
Objectives of the		o understand the behavior of electrolytes in terms of conductance,								
course	ionic atmo	ic atmosphere, interactions.								
	To famili	arize the st	ructu	re of the	electi	rical double la	yer of different			
	models.									
	To compa	re electrode	s bet	ween curr	ent de	ensity and over	r potential.			
	To discus	s the mecha	nism	of electro	chem	ical reactions.	_			
	To highlig	ght the diffe	erent	types of c	ver v	oltages and it	s applications in			
		llytical tech								
Course Outline				•		*	off factor and its			
							behavior. Ionic			
							efficient-concept			
							trolytes, activity			
							tivity coefficient			
							n. Debye-Huckel nw at appreciable			
	concentra			rolytes						
				•			ment of strong			
							and limitations.			
		_		_			and triple ion			
	formation			r			p			
	UNIT-II:	Electrode	-elec	trolyte in	nterfa	ace: Interfacia	al phenomena -			
				•			non-polarizable			
	interfaces	, Electroca	pillar	y phenon	nena	- Lippmann	equation electro			
	capillary			ctro-kineti			electro-osmosis,			
							ls, colloidal and			
		•			•		z -Perrin, Guoy-			
	_					-	r. Zeta potential			
						and limitation				
					-		ctions: Behavior			
							ilibrium. Anodic			
						_	of ions. Nernst			
	-	-		-			Model of three			
		•	_				emical reactions: olmer equation-			
		-		•			ent density and			
	_		_				symmetry factor			
				-		nd Tafel plots.	symmetry factor			
							System: Rates of			
				-	•		tion for a multi-			
		-				-	polarization and			
	stop rea	Caon. Rate	401		БСР	, ciccirode p	Jan Lation and			

depolarization. Transfer coefficients, its significance and determination, Stoichiometric number. Electro-chemical reaction mechanisms-rate expressions, order, and surface coverage. Reduction of I³⁻, Fe²⁺, and dissolution of Fe to Fe²⁺. Overvoltage - Chemical and electro chemical, Phase, activation and concentration over potentials. Evolution of oxygen and hydrogen at different pH. Pourbiax and Evan's diagrams. UNIT-V: Concentration Polarization, Batteries and Fuel cells: Modes of Transport of electro active species - Diffusion, migration and hydrodynamic modes. Role of supporting electrolytes. Polarographyprinciple and applications. Principle of square wave polarography. Cyclic voltammetry- anodic and cathodic stripping voltammetry and differential pulse voltammetry. Sodium and lithium-ion batteries and redox flow batteries. Mechanism of charge storage: conversion and alloying. Capacitors- mechanism of energy storage, charging at constant current and constant voltage. Energy production systems: Fuel Cells: classification, alkaline fuel cells, phosphoric acid fuel cells, high temperature fuel cells. Questions related to the above topics, from various competitive Extended **Professional** examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others Component (is a to be solved part of internal (To be discussed during the Tutorial hours) component only, Not to be included in the external examination question paper) Skills acquired Knowledge, Problem solving, Analytical ability, Professional from this course Competency, Professional Communication and Transferable skills. Recommended D. R. Crow, Principles and applications of electrochemistry, 4thedition, Chapman & Hall/CRC, 2014. **Text** J. Rajaram and J.C. Kuriakose, Kinetics and Mechanism of 2. chemical transformations Macmillan India Ltd., New Delhi, 2011. S. Glasstone, Electro chemistry, Affiliated East-West Press, Pvt., Ltd., New Delhi, 2008. B. Viswanathan, S. Sundaram, R. Venkataraman, K. Rengarajan and P.S. Raghavan, Electrochemistry-Principles and applications, S. Viswanathan Printers, Chennai, 2007. Joseph Wang, Analytical Electrochemistry, 2nd edition, Wiley, 5. 2004. Reference Books J.O.M. Bockris and A.K.N. Reddy, Modern Electro chemistry, vol.1 and 2B, Springer, Plenum Press, New York, 2008. J.O.M. Bockris, A.K.N. Reddy and M.G. Aldeco Morden Electro chemistry, vol. 2A, Springer, Plenum Press, New York, 2008. Philip H. Rieger, Electrochemistry, 2nd edition, Springer, New York, 2010. L.I. Antropov, Theoretical electrochemistry, Mir Publishers, 1977. 4. K.L. Kapoor, A Text book of Physical chemistry, volume-3, Macmillan, 2001.

Website and	1. https://www.pdfdrive.com/modern-electrochemistry-e34333229.
e-learning source	

Students will be able:

CO1: To understand the behaviour of electrolytes in solution and compare the structures of electrical double layer of different models.

CO2: To predict the kinetics of electrode reactions applying Butler-Volmer and Tafel equations

CO3: To study different thermodynamic mechanism of corrosion,

CO4: To discuss the theories of electrolytes, electrical double layer, electrodics and activity coefficient of electrolytes

CO5: To have knowledge on storage devices and electrochemical reaction mechanism.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the		MC	DLEC	CULAR S	PEC'	FROSCOPY					
Course	Elastina l	T									
Paper No.	Elective 1		т	Credita	3	Course					
Category	Liective	Year Semester	I	Credits	3	Course Code					
Instructional	Lecture	Tutorial	_	Practice		Total					
hours per week	4	1	Lat	ractice		5					
Prerequisites	Basic knowledge of spectroscopy										
Objectives of the	To understand the influence of rotation and vibrations on the spectra of										
course	the polyatomic molecules.										
600150											
	To study the principle of Raman spectroscopy, ESR spectroscopy, EPR spectroscopy and fragmentation patterns in Mass spectroscopy.										
	To highli	To highlight the significance of Franck-Condon principle to interpret									
	the select	the selection rule, intensity and types of electronic transitions.									
	To interp	ret the first	and s	econd orde	er NN	AR spectra in	terms of splitting				
			ns us	sing corre	lation	n techniques	such as COSY,				
		, NOESY.		1 1 '1	, •	C 1 1	1:00				
	_		ructu	rai eiucida	ation	of molecules	s using different				
Course Outline		echniques. Rotational	and	Raman S	necti	roscony. Rota	ational spectra of				
Course Outline					-		otational spectral				
							Classical theory				
		-				•	<u> </u>				
			-	•		-	ability ellipsoids,				
	_	-					Raman spectra of				
		•		-			nti-Stokes lines. s, rule of mutual				
		_				=					
		attered pho		structure-	O an	u S branches,	, Polarization of				
	UNIT-II:			Speetres	00011	Vibrations	of molecules				
							of molecules, ergy expression,				
							their symmetry,				
							spectral lines,				
			_			_	pic substitution.				
		_				-	tra of diatomic				
							rn-Oppenheimer				
				-	-		es – symmetry				
						•	uence of rotation				
		-					Q, R branches, symmetric top				
	molecules		uicui	n viorati	J118 (n ililear and	symmetric top				
	UNIT-III		nic	spectros	copv	: Electronic	Spectroscopy:				
	Electronic					molecules,					
		dissociation	on a	nd predis	ssocia	tion spectra.	$\pi \rightarrow \pi^*$, $n \rightarrow \pi^*$				
						-	ectroscopy: Basic				
		-		-			nolecules, Xray				
	-	-	_	•			ction, population				
		properties	S OI	iaser rad	111101	i, examples	of simple laser				
	systems.										

UNIT-IV: NMR and ESR spectroscopy: Chemical shift, Factors influencing chemical shifts: electronegativity and electrostatic effects; Mechanism of shielding and deshielding. Spin systems: First order and second order coupling of AB systems, Simplification of complex spectra. Spin-spin interactions: Homonuclear coupling interactions -AX, AX2, AB types. Vicinal, germinal and long-range coupling-spin decoupling. Nuclear Overhauser effect (NOE), Factors influencing coupling constants and Relative intensities. 13CNMR and structural correlations, Satellites. Brief introduction to 2D NMR - COSY, NOESY. Introduction to 31P, 19F NMR. ESR spectroscopy Characteristic features of ESR spectra, line shapes and line widths; ESR spectrometer. The g value and the hyperfine coupling parameter (A), origin of hyperfine interaction. Interpretation of ESR spectra and structure elucidation of organic radicals using ESR spectroscopy; Spin orbit coupling and significance of g-tensors, zero/non-zero field splitting, Kramer's degeneracy, application to transition metal complexes (having one to five unpaired electrons) including biological molecules and inorganic free radicals. ESR spectra of magnetically dilute samples.

UNIT-V: Mass Spectrometry, EPR and Mossbauer Spectroscopy: Ionization techniques- Electron ionization (EI), chemical ionization (CI), desorption ionization (FAB/MALDI), electrospray ionization (ESI), isotope abundance, molecular ion, fragmentation processes of organic molecules, deduction of structure through mass spectral fragmentation, high resolution. Effect of isotopes on the appearance of mass spectrum. EPR spectra of anisotropic systems - anisotropy in gvalue, causes of anisotropy, anisotropy in hyperfine coupling, hyperfine splitting caused by quadrupole nuclei. Zero-field splitting (ZFS) and Kramer's degeneracy. Applications of EPR to organic and inorganic systems. Structural elucidation of organic compounds by combined spectral techniques. Principle of Mossbauer spectroscopy: Doppler shift, recoil energy. Isomer shift, quadrupole splitting, magnetic interactions. Applications: Mossbauer spectra of high and low-spin Fe and Sn compounds.

Extended
Professional
Component (is a part of internal component only,
Not to be included in the external examination question paper)

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommended	1. C. N. Banwell and E. M. McCash, Fundamentals of Molecular
Text	Spectroscopy, 4 th Ed., Tata McGraw Hill, New Delhi, 2000.
	2. R. M. Silverstein and F. X. Webster, <i>Spectroscopic Identification</i>
	of Organic Compounds, 6th Ed., John Wiley & Sons, New York,
	2003.
	3. W. Kemp, <i>Applications of Spectroscopy</i> , English Language Book
	Society, 1987.
	4. D. H. Williams and I. Fleming, Spectroscopic Methods in Organic
	Chemistry, 4th Ed., Tata McGraw-Hill Publishing Company, New
	Delhi, 1988.
	5. R. S. Drago, Physical Methods in Chemistry; Saunders:
	Philadelphia, 1992.
Reference Books	1. P.W. Atkins and J. de Paula, <i>Physical Chemistry</i> , 7 th Ed., Oxford
	University Press, Oxford, 2002.
	2. I. N. Levine, <i>Molecular Spectroscopy</i> , John Wiley & Sons, New
	York, 1974.
	3. A. Rahman, Nuclear Magnetic Resonance-Basic Principles,
	Springer-Verlag, New York, 1986.
	4. K. Nakamoto, Infrared and Raman Spectra of Inorganic and
	coordination Compounds, PartB: 5th ed., John Wiley& Sons Inc.,
	New York, 1997.
	5. J. A. Weil, J. R. Bolton and J. E. Wertz, <i>Electron Paramagnetic</i>
	Resonance; Wiley Interscience, 1994.
Website and	1. https://onlinecourses.nptel.ac.in/noc20_cy08/preview
e-learning source	2. https://www.digimat.in/nptel/courses/video/104106122/L14.html
	Dodge on the Manager and BCOs

Students will be able:

CO1: To understand the importance of rotational and Raman spectroscopy.

CO2: To apply the vibrational spectroscopic techniques to diatomic and polyatomic molecules.

CO3: To evaluate different electronic spectra of simple molecules using electronic spectroscopy.

CO4: To outline the NMR, ¹³C NMR, 2D NMR – COSY, NOESY, Introduction to ³¹P, ¹⁹F NMR and ESR spectroscopic techniques.

CO5: To develop the knowledge on principle, instrumentation and structural elucidation of simple molecules using Mass Spectrometry, EPR and Mossbauer Spectroscopy techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the Course		ORGANIC I	REA(CTION MEC	CHAN	IISM-II					
Paper No.	Core IV										
Category	Core	Year	I	Credits	4	Course					
		Semester	II			Code					
Instructional	Lecture	Tutorial	Lab	Practice	1	Total					
hours per	4	1	-			5					
week											
Prerequisites	Basic know	ledge of organic	chen	nistry		•					
Objectives of	To understand the concept of aromaticity in benzenoid, non-benzenoid,										
the course		and annulene co		-							
	To understa	and the mecha	nism	involved in	vario	ous types of	organic				
	reactions wi	th evidences.									
	To understa	nd the applicatio	ns of	synthetically	impor	tant reagents.					
		the reactivity be				-	ds.				
		nthetic routes for									
Course		imination and l									
Outline	and E1cB	mechanisms. Sy	n- aı	nd anti-elimi	natior	s. Orientation	n of the				
	double bond	l: Hoffmann and	Sayt	zeff rules. Re	activi	ty: Effect of s	ubstrate,				
	attacking b	bases, leaving	grou	p and med	dium.	Stereochemi	istry of				
	eliminations	in acyclic and	cycl	ic systems, 1	pyroly	tic eliminatio	n. Long				
		hort-lived radic	-	-			_				
		cal reactions, De				•					
	_	dical reactions			-						
	polymerizat					omatic subst	-				
	1 -	ents. Reactivity:		•							
	_	=		=	_	, aromatic su	iosiraies,				
		the attacking rac				3.6.1.	D: .				
	electron tra	Oxidation and ansfer, hydride	tran	sfer, hydrog							
		nination, oxid				coupling r					
		of oxidation rea				• •					
		rricyanide, mer				_	_				
	_	dioxide, osmium s, alcohols, halid				•					
		- cleavage of do									
		oxidation by		,		•					
		vern oxidation) a					-				
		l carbodiimide		•		•	-				
		Wolff-Kishner,	•								
		nd triphenyltin									
	_	us hydrogenatic	•		•		-				
	and Bouveau	ult-Blanc reducti	ion.								
	UNIT-III: I	Rearrangement	s: Rea	arrangements	to ele	ectron deficien	t carbon:				
		colone and sem									
	-	stry, Wagner-M	-		_						
		an, Benzilic acio		=		=					
		icient nitrogen: l			_	_					
	Ciccion del	iciciii iiiiiogeii. I	. 1011116	ann, Curtius,		idi, Lossell, D	CKIIIaIIII				

and abnormal Beckmann rearrangements. Rearrangements to electron deficient oxygen: Baeyer-Villiger oxidation and Dakin rearrangements. Rearrangements to electron rich atom: Favorskii, Quasi-Favorskii, Stevens, [1,2]-Wittig and [2,3]-Wittig rearrangements. Fries and Photo Fries rearrangement. Intramolecular rearrangements – Claisen, abnormal Claisen, Cope, oxy-Cope Benzidine rearrangements.

UNIT-IV: Addition to Carbon Multiple Bonds: Mechanisms: (a) Addition to carbon-carbon multiple bonds- Addition reactions involving electrophiles, nucleophiles, free radicals, carbenes and cyclic mechanisms-Orientation and reactivity, hydrogenation of double and triple bonds, Michael reaction, addition of oxygen and Nitrogen; (b) Addition to carbonhetero atom multiple bonds: Mannich reaction, acids, esters, nitrites, addition of Grignard reagents, Wittig reaction, Prins reaction. Stereochemical aspects of addition reactions. Addition to Carbon-Hetero atom Multiplebonds: Addition of Grignard reagents, organozinc and organolithium reagents to carbonyl and unsaturated carbonyl compounds. Mechanism of condensation reactions involving enolates —Stobbe reactions. Hydrolysis of esters and amides, ammonolysis of esters.

UNIT-V: Reagents and Modern **Synthetic Reactions:** Lithium diisopropylamine (LDA), Azobisisobutyronitrile (AIBN), Sodium cyanoborohydride (NaBH₃CN), meta-Chloroperbenzoic acid (m-CPBA), Dimethyl aminiopyridine (DMAP), n-Bu₃SnD, Triethylamine (TEA), Diazobicyclo[5.4.0]undec-7-ene (DBU), Diisopropylazodicarboxylate (DIAD), Diethylazodicarboxylate (DEAD), N-bromosuccinimide (NBS), Trifluoroacetic acid (TFA), Tetramethyl piperiridin-1-oxyl (TEMPO), Phenyltrimethylammonium tribromide (PTAB). Diazomethane and Zn-Cu, Diethyl maleate (DEM), Copper diacetylacetonate (Cu(acac)₂), TiCl₃, NaIO₄, Pyridinium chlorochromate (PCC), Pyridinium dichromate (PDC), Meisenheimer complex. Suzuki coupling, Heck reaction, Negishi reaction, Baylis-Hillman reaction.

Extended
Professional
Component (is
a part of
internal
component
only, Not to be
included in the
external
examination
question

Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved

(To be discussed during the Tutorial hours)

Skills acquired from this course

paper)

Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills.

Recommende									
	1. J. March and M. Smith, <i>Advanced Organic Chemistry</i> , 5th ed.,								
d Text	John-Wiley and Sons. 2001.								
	2. E. S. Gould, Mechanism and Structure in Organic Chemistry,								
	Holt, Rinehart and Winston Inc., 1959.								
	,								
	3. P. S. Kalsi, Stereochemistry of carbon compounds, 8 th edn, New								
	Age International Publishers, 2015.								
	4. P. Y.Bruice, <i>Organic Chemistry</i> , 7 th edn., Prentice Hall, 2013.								
	5. R. T. Morrison, R. N. Boyd, S. K. Bhattacharjee Organic								
	Chemistry, 7 th edn., Pearson Education, 2010.								
Reference	1. S. H. Pine, Organic Chemistry, 5 th edn, McGraw Hill								
Books	International Editionn, 1987.								
	2. L. F. Fieser and M. Fieser, <i>Organic Chemistry</i> , Asia Publishing								
	House, Bombay, 2000.								
	3. E.S. Gould, Mechanism and Structure in Organic Chemistry, Holt,								
	Rinehart and Winston Inc., 1959.								
	4. T. L. Gilchrist, <i>Heterocyclic Chemistry</i> , Longman Press, 1989.								
	5. J. A. Joule and K. Mills, <i>Heterocyclic Chemistry</i> , 4 th ed., John-								
	Wiley, 2010.								
Website and	1. https://sites.google.com/site/chemistryebookscollection02/home/organ								
e-learning	<u>ic-chemistry/organic</u>								
source	2. https://www.organic-chemistry.org/								

Students will be able:

CO1: To recall the basic principles of aromaticity of organic and heterocyclic compounds.

CO2: To understand the mechanism of various types of organic reactions.

CO3: To predict the suitable reagents for the conversion of selective organic compounds.

CO4: To correlate the principles of substitution, elimination, and addition reactions.

CO5: To design new routes to synthesis organic compounds.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSICAL CHEMISTRY-I									
Course										
Paper No.	Core V		1 -							
Category	Core	Year	I	Credits	4	Course				
T 4 4 1	T 4	Semester		D 4		Code				
Instructional	Lecture	Tutorial	Lat	Practice		Total				
hours per week	Pagia aar	1	-	l abanciat		5				
Prerequisites Objectives of the		the fundam	_		_	amics and the	composition of			
course	To recall the fundamentals of thermodynamics and the composition of partial molar quantities.									
course		-		l and statis	stical	approach of th	ne functions			
							Fermi-Dirac and			
	Bose-Ein	_				,				
	To corre	late the th	neorie	s of reac	ction	rates for the	e evaluation of			
		namic para								
		the mechan								
Course Outline				-			olar properties-			
		-				-	ry and ternary			
	_			-		-	rmodynamics of			
		_	•				graphical and			
	equation	of state m	ethod	ls-depende	ence	of temperature	e, pressure and			
	composit	ion. Thermo	odyna	mics of ic	leal a	and non-ideal b	oinary mixtures,			
	Duhem -	 Margulus 	equ				and non-ideal			
	mixtures.	Activity	and	activity	co	efficients-stan	dard states -			
	determina	ation-vapou	r pres	sure, EMF	and	freezing point	methods.			
	UNIT-II:	Statistica	al th	ermodyna	amics	: Introduction	n of statistical			
	_	namics co	-			•	mathematical			
	1						-distinguishable			
							es. Maxwell - comparison and			
							onal, vibrational			
							diatomic and			
		-					erms of partition			
		_		•			cal approach to			
		ynamic pro	-	-			nergy, entropy,			
		Gibb's					esidual entropy,			
	-						eat capacity of			
		a di atomic Istein and D	_		ia pai	ra nydrogen. F	Heat capacity of			
					nami	rs. Theories of	f conservation of			
				•			by heat, matter			
		0.					ory-validity and			
							tro kinetic and			
	thermo n	nechanical e	effects	-		-	thermodynamics			
		cal systems								
							ctions-effect of			
							reaction rates,			
	Unimolec	cular react	ions	-Lindema	n ar	na Christianse	en hypothesis-			

1	molecular beams, collision cross sections, effectiveness of collisions,
	Potential energy surfaces. Transition state theory-evaluation of
	thermodynamic parameters of activation-applications of ARRT to
	reactions between atoms and molecules, time and true order-kinetic
	parameter evaluation. Factors determine the reaction rates in solution -
	primary salt effect and secondary salt effect, Homogeneous catalysis-
	acid- base catalysis-mechanism of acid base catalyzed reactions-
	Bronsted catalysis law, enzyme catalysis-Michelis-Menton catalysis.
	UNIT-V: Kinetics of complex and fast reactions: Kinetics of complex reactions, reversible reactions, consecutive reactions, parallel reactions, chain reactions. Chain reactions-chain length, kinetics of H ₂ – Cl ₂ & H ₂ – Br ₂ reactions (Thermal and Photochemical reactions) - Rice Herzfeld mechanism. Study of fast reactions-relaxation methods-temperature and pressure jump methods electric and magnetic field jump methods -stopped flow flash photolysis methods and pulse
	radiolysis. Kinetics of polymerization-free radical, cationic, anionic
T . 1 1	polymerization - Polycondensation.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved
Component (is a	
part of internal component only,	(To be discussed during the Tutorial hours)
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
_	
from this course	Competency, Professional Communication and Transferable skills.
from this course Recommended	Competency, Professional Communication and Transferable skills. 1. J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of
	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. Benjamin Publishers, California, 1972.
Recommended	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. Benjamin Publishers, California, 1972.
Recommended	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint -
Recommended	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013.
Recommended	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013.
Recommended	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, M acmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, M acmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition,S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation,M acmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996.
Recommended Text Reference Books	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N.Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, M acmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996. Gurdeep Raj, Phase rule, Goel Publishing House, 2011.
Recommended Text	 J. Rajaram and J.C. Kuriacose, Thermodynamics for Students of Chemistry, 2nd edition, S.L.N. Chand and Co., Jalandhar, 1986. I.M. Klotz and R.M. Rosenberg, Chemical thermodynamics, 6th edition, W.A. BenjaminPublishers, California, 1972. M.C. Gupta, Statistical Thermodynamics, New Age International, Pvt. Ltd., New Delhi, 1995. K.J. Laidler, Chemical Kinetics, 3rd edition, Pearson, Reprint - 2013. J. Rajaram and J.C. Kuriokose, Kinetics and Mechanisms of chemical transformation, Macmillan India Ltd, Reprint - 2011. D.A. Mcqurrie And J.D. Simon, Physical Chemistry - A Molecular Approach, Viva Books Pvt. Ltd., New Delhi, 1999. R.P. Rastogi and R.R. Misra, Classical Thermodynamics, Vikas Publishing, Pvt. Ltd., New Delhi, 1990. S.H. Maron and J.B. Lando, Fundamentals of Physical Chemistry, Macmillan Publishers, New York, 1974 K.B. Ytsiimiriski, "Kinetic Methods of Analysis", Pergamom Press, 1996.

Students will be able:

CO1: To explain the classical and statistical concepts of thermodynamics.

CO2: To compare and correlate the thermodynamic concepts to study the kinetics of chemical reactions.

CO3: To discuss the various thermodynamic and kinetic determination.

CO4: To evaluate the thermodynamic methods for real gases ad mixtures.

CO5: To compare the theories of reactions rates and fast reactions.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the Course		INORG	ANI	C CHEM	ISTI	RY PRACTIC	CAL			
Paper No.	Core VI									
Category	Core	Year	Ι	Credits	4	Course				
Category	Core		II	Credits	4	Code				
T 4 4 1	T 4	Semester		D						
Instructional	Lecture	Tutorial		Practice		Total				
hours per week	-	1	4			5	•			
Prerequisites						alitative analy				
Objectives of the	To understand and enhance the visual observation as an analytical tool									
course	for the quantitative estimation of ions. To recall the principle and theory in preparing standard solutions									
	To recall the principle and theory in preparing standard solutions. To train the students for improving their skill in estimating the amount									
							ating the amount			
		urately pre								
			ns, pi	resent in th	ne gr	ven solution ac	ccurately without			
	using inst			c ·						
Comment O. (1)						•	xture accurately.			
Course Outline							a mixture of four			
	be tested.	ntaining tw	o co	mmon cau	ons a	and two rare ca	ations. Cations to			
	Group-I	. W. т	l and	l Db						
	Group-II	: W, T		o, Cu, Bi a	and C	74				
	Group-II					Ti and U.				
	Group-III Group-IV			o and Mn.	1, 16,	Trana C.				
	Group-I v		,							
	Group-V									
					omn	lexes: Preparat	tion of inorganic			
	complexe	_	011	i ilictui c	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	iezes. Trepura	non or morganic			
		tion of trist	hiour	eacopper(l)sul	phate				
		tion of pota								
		tion of tetra				, ,				
		tion of Rei			ŕ	•				
	-				r(I) c	hloridedihydra	ite			
	f. Prepara	tion of <i>cis</i> -I	Potas	sium tri ox	alate	e diaquachroma	ate(III)			
	g. Prepara	tion of sodi	ium t	rioxalatofe	errate	e(III)				
	h. Prepara	tion of hexa	athio	urealead(I	I) nit	rate				
	UNIT-III	: Complex	omet	ric Titrat	ion:					
	1. Estima	ion of zinc,	nick	el, magne	sium	, and calcium.				
				of metal ion	ns-pF	I control, mask	king and			
		king agents.					_			
						n mixture (pH o	control).			
			_		-	esence of iron.				
	5. Determ	ination of n	ickel	in the pre	senc	e of iron.				
Extended	Questions	related to t	he at	ove topics	s, fro	m various com	petitive			
Professional							/TNPSC others			
Component (is a	to be solv	ed								
part of internal	(To be dis	cussed duri	ng th	ne Tutorial	hou	rs)				
component only,										
Not to be included										

in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. A. JeyaRajendran, Microanalytical Techniques in Chemistry:
Text	Inorganic Qualitative Analysis, United global publishers, 2021.
	2. V. V. Ramanujam, Inorganic Semimicro Qualitative Analysis;
	3rded., The National Publishing Company, Chennai, 1974.
	3. Vogel's Text book of Inorganic Qualitative Analysis, 4thed., ELBS,
	London.
Reference Books	1. G. Pass, and H. Sutcliffe, Practical Inorganic Chemistry; Chapman
	Hall, 1965.
	2. W. G. Palmer, Experimental <i>Inorganic Chemistry</i> ; Cambridge
	University Press, 1954.

Students will be able:

CO1: To identify the anions and cations present in a mixture of salts.

CO2: To apply the principles of semi micro qualitative analysis to categorize acid radicals and basic radicals.

CO3: To acquire the qualitative analytical skills by selecting suitable confirmatory tests and spot tests.

CO4: To choose the appropriate chemical reagents for the detection of anions and cations.

CO5: To synthesize coordination compounds in good quality.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the				TOTAL T	MEDICINAL CHEMISTRY								
Course		Ι	MED	DICINAL	CHE	MISTRY							
Paper No.	Elective 1	II											
Category	Elective	Year	I	Credits	4	Course							
		Semester	II			Code							
Instructional	Lecture	Tutorial	Lal	Practice		Total	,						
hours per week	4	1	_			5							
Prerequisites	Basic kno	wledge of	medi	cinal cher	nistr	v							
Objectives of the	To study the chemistry behind the development of pharmaceutical												
course	materials.												
		nowledge o	n me	chanism a	nd ac	tion of drugs.							
	_	_				usage of drugs	. .						
							ts and treatment						
	of diabete												
	To identif	y and apply	the a	action of v	ariou	s antibiotics.							
Course Outline							argets, Agonist,						
							heories of Drug						
	– recep	tor intera	ction	n, Drug	Sy	nergism, Dr	ug resistance,						
	physicoch	emical facto	ors ir	nfluencing	drug	action.							
	UNIT-II:	Antibioti	cs:	Introduction	n, T	argets of ant	tibiotics action,						
							of action, SAR						
	of penic	lins and t	tetrac	yclins, c	linica	l application	of penicillins,						
	cephalosp	orin.Curren	t trer	nds in antil	oiotic	therapy.							
							Classification of						
	cardiovas	cular agent	s, in	troduction	to	hypertension,	etiology, types,						
	classificat	ion of antil	ıypeı	tensive ag	gents,	classification	and mechanism						
						chlorothiazide,							
							Classification of						
							etiology, types,						
			• •	_			and mechanism						
	of action	of diuretics,	Furc	semide, H	[ydro	chlorothiazide,	Amiloride.						
	UNIT-V:	Analgesics	s, Ar	ntipyretics	and	Anti-inflamr	matory Drugs:						
	Introducti	on, Mech	anisr	n of in	nflam	mation, class	sification and						
	mechanis	m of acti	on	and para	cetan	nol, Ibuprofe	n, Diclofenac,						
							line. Medicinal						
	Chemistry	of Antidi	abeti	c Agents	Intro	duction, Type	es of diabetics,						
	Drugs us	ed for the t	reatn	nent, chen	nical	classification,	Mechanism of						
	action, Ti	eatment of	diab	etic mellit	us. C	Chemistry of in	nsulin, sulfonyl						
	urea.												
Extended						n various comp							
Professional			TRE	3 / NET/ U	JGC-	CSIR / GATE /	/TNPSC others						
Component (is a	to be solv			_									
part of internal	(To be dis	cussed duri	ng th	e Tutorial	hour	s)							
component only,													
Not to be included													
in the external													
examination													
question paper)													

Skills acquired	Knowledge, Problem solving, Analytical ability, Professional								
from this course	Competency, Professional Communication and Transferable skills.								
Recommended Text	Wilson and Gisvold's textbook of organic medicinal and pharmaceutical chemistry, Wilson, Charles Owens: Beale, John Marlowe; Block, John H,								
	Lipincott William, 12th edition, 2011. 3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th								
	edition, Oxford University Press, 2013. Jayashree Ghosh, A text								
	book of Pharmaceutical Chemistry, S. Chand and Co. Ltd, 1999, 1999 edn.								
	4. O. LeRoy, Natural and synthetic organic medicinal compounds, Ealemi, 1976.								
	5.S. Ashutosh Kar, Medicinal Chemistry, Wiley Eastern Limited, New								
	Delhi, 1993, New edn.								
Reference Books	1. Foye's Princles of Medicinal Chemistry, Lipincott Williams, Seventh Edition, 2012								
	2. Burger's Medicinal Chemistry, Drug Discovery and Development, Donald J. Abraham, David P. Rotella, Alfred Burger, Academic press, 2010.								
	3. Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry, John M. Beale Jr and John M. Block, Wolters Kluwer, 2011, 12 th edn.								
	4. P. Parimoo, A Textbook of Medical Chemistry, New Delhi: CBS Publishers.1995.								
	5. S. Ramakrishnan, K. G. Prasannan and R. Rajan, Textbook of Medical Biochemistry, Hyderabad: Orient Longman. 3 rd edition, 2001.								
Website and	1. https://www.ncbi.nlm.nih.gov/books/NBK482447/								
e-learning source	2. https://training.seer.cancer.gov/treatment/chemotherapy/types.html								
	3. https://www.classcentral.com/course/swayam-medicinal-chemistry-12908								
Course I coming	Outgomes (for Monning with DOs and DSOs)								

Students will be able:

CO1: Predict a drugs properties based on its structure.

CO2: Describe the factors that affect its absorption, distribution, metabolism, and excretion, and hence the considerations to be made in drug design.

CO3: Explain the relationship between drug's chemical structure and its therapeutic properties.

CO4: Designed to give the knowledge of different theories of drug actions at molecular level.

CO5: To identify different targets for the development of new drugs for the treatment of infectious and GIT.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the			G]	REEN CH	[EM]	ISTRY			
Course	T21 4° 1	***							
Paper No.	Elective 1 Elective		Ι	Cuadita	4	Commo			
Category	Elective	Year Semester	II	Credits	4	Course Code			
Instructional	Lecture	Tutorial		 Practice		Total			
hours per week	4	1 utoriai	Lai) Fractice		5			
Prerequisites	•	wledge of	TOPO	ral chamic	of 10x7	3			
Objectives of the									
course	To discuss the principles of green chemistry. To propose green solutions for chemical energy storage and conversion.								
course	Propose green solutions for industrial production of Petroleum and								
	Petrochemicals.								
	Propose s	solutions for	r pol	lution pre	venti	on in Industri	al chemical and		
	fuel								
		,		•		pping industrie			
					ıstria	l production	of Surfactants,		
	Organic a	nd inorgani	c che	micals.					
Course Outline	TINITT T.	Introduction	N T	d for C	Cl	niotus Ca-1- C	Croon Charita		
Course Outline						•	Green Chemistry. , terminologies,		
				-			elve principles of		
		mistry with e			amza	lons and I w	erve principles of		
		<u> </u>							
				•		•	sts and solvents		
			•	•	•		green synthesis-		
	green re	agents: din	nethy	l carbona	ate.	Green solven	its: Water,Ionic		
	liquids-cr	iteria, gene	ral	methods of	of pr	eparation, eff	fect on organic		
	reaction.	Supercritic	cal	carbon	dioxi	de- propertie	es, advantages,		
	drawback	s and a few	v exa	imples of	orgai	nic reactions i	n scCO ₂ . Green		
	synthesis-	adipic acid	and o	catechol.					
	UNIT-III	: Environn	nenta	l pollutio	n, G	reen Catalysis	s-Acid catalysts,		
						•	ed catalysts-Poly		
							catalysts, Poly		
	supported	photosensit	tizers	5.					
				-	_	-	oxidation using		
		-				sterification,	-		
	_				react	tion, Displace	ement reaction.		
	Application	ons in organ	ic sy	nthesis.					
	UNIT-V:		wave		_	•	sis-Introduction,		
						ications. So			
				•	/ -	Ultra sound	assisted green		
Extended		and Applica			£ =	n	natitiva		
Extended Professional						n various com	petitive /TNPSC others		
Component (is a	to be solv		1 // [) / NE1/ U	JUC-	CSIN/ UAIE	/ INFSC UHEIS		
part of internal		eu scussed duri	no th	e Tutorial	hour	(2			
component only,	(10 bc all	cussea auli	ng u	e ruionan	noul	9)			
Not to be included									
in the external									
III viio omeriiai	<u> </u>								

examination										
question paper)										
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional									
from this course	Competency, Professional Communication and Transferable skills.									
Recommended	1. Ahluwalia, V.K. and Kidwai, M.R. New Trends in Green Chemistry,									
Text	Anamalaya Publishers, 2005.									
	2. W. L. McCabe, J.C. Smith and P. Harriott, Unit Operations									
	of Chemical Engineering, 7 th edition, McGraw-Hill,									
	NewDelhi,2005.									
	. J. M. Swan and D. St. C. Black, Organometallics in Organic									
	Synthesis, Chapman Hall, 1974.									
	4. V. K. Ahluwalia and R. Aggarwal, Organic Synthesis:									
	Special Techniques, Narosa Publishing House, New Delhi, 2001.									
	5. A. K. De, Environmental Chemistry, New Age									
	Publications, 2017.									
Reference Books	1. Anastas, P.T. and Warner, J.K. Oxford Green Chemistry -Theory and									
	Practical, University Press, 1998									
	2. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker, 2001									
	3. Cann, M.C. and Connely, M.E. Real-World Cases in Green Chemistry,									
	American Chemical Society, Washington, 2000									
	4. Ryan, M.A. and Tinnesand, M., Introduction to Green Chemistry,									
	American Chemical Society Washington, 2002.									
	5. Chandrakanta Bandyopadhyay, An Insight into Green Chemistry,									
****	Books and Allied (P) Ltd, 2019.									
Website and	2. https://www.organic-chemistry.org/									
e-learning source	3. https://www.studyorgo.com/summary.php									

Students will be able:

CO1: To recall the basic chemical techniques used in conventional industrial preparations and in green innovations.

CO2: To understand the various techniques used in chemical industries and in laboratory.

CO3: To compare the advantages of organic reactions assisted by renewable energy sources and non-renewable energy sources.

CO4: To apply the principles of PTC, ionic liquid, microwave and ultrasonic assisted organic synthesis.

CO5: To design and synthesize new organic compounds by green methods.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Course Paper No. Category		BIO-INORGANIC CHEMISTRY												
•	Elective 1	IV												
·······g·-·/	Elective	Year	Ι	Credits	4	Course								
		Semester	II	0 - 0 - 0 - 0 - 0 - 0		Code								
nstructional	Lecture	Tutorial	Lab	Lab Practice		Total								
ours per week	4	1	- 5											
rerequisites	Basic knowledge of chemistry													
Objectives of the	To understand the role of trace elements.													
ourse	To understand the biological significance of iron, sulpur.													
	_	To study the toxicity of metals in medicines.												
		knowledge o				.•								
N 0 411		s on various					. 1							
Course Outline						-	t and storage of							
						-	n and potassium							
	-	-				~	: Zinc enzymes–							
							zymes-catalase,							
	peroxidas	e. Copper	enzyı	mes – sup	perox	ide dismutase	, Plast ocyanin,							
	Cerulopla	ismin, Tyros	sinase	e. Coenzyr	nes -	Vitamin-B12	coenzymes.							
	UNIT-II:	Transpor	t Pr	oteins: ()xyge	en carriers -H	Iemoglobin and							
	myoglobi	n - Structui	re an	d oxygena	ation	Bohr Effect.	Binding of CO,							
	NO, CN-	to Myogle	obin	and Hem	oglol	oin. Biological	l redox system:							
					_	=	=							
	_			•		•	Cytochromes-Classification, cytochrome a, b and c. Cytochrome P-450.							
	Non-heme oxygen carriers-Hemerythrin and hemocyanin. Iron-sulphur													
	proteins-	proteins- Rubredoxin and Ferredoxin- Structure and classification. UNIT-III: Nitrogen fixation-Introduction, types of nitrogen fixing												
	-			Ferredoxir	ı- Str	ucture and clas	ssification.							
	UNIT-III	I: Nitrogen	fixa	Ferredoxir ation-Intro	n- Str oduct	ucture and classion, types of	ssification. nitrogen fixing							
	UNIT-III microorga	I: Nitrogen anisms. Niti	fixa	Ferredoxir ation-Intro ase enzyr	n- Str oduct ne -	ucture and classion, types of Metal clusters	nitrogen fixing in nitrogenase-							
	UNIT-III microorga redox pro	I: Nitrogen anisms. Nitroperty - Dir	fixa rogen	Ferredoxir ation-Intro ase enzyr gen comple	n- Str oduct ne - exes	ucture and classion, types of Metal clusters transition metals	ssification. nitrogen fixing							
	UNIT-III microorga redox pro dinitroger dinitroger	I: Nitrogen anisms. Nitroperty - Dir n - nitroger n to an	fixarogen nitrog n fixa	Ferredoxir ation-Intro nase enzyr gen comple ation via	n- Str oduct ne - exes nitrid	ion, types of Metal clusters transition metal e formation at thesis:	nitrogen fixing in nitrogenase-al complexes of							
	UNIT-III microorga redox pro dinitroger dinitroger photosyst	I: Nitrogen anisms. Nitroperty - Dir n - nitrogen n to an em-II-chlore	fixa rogen nitrog n fixa nmon ophyl	Ferredoxir ation-Intro nase enzyr gen comple ation via ia. Phot lls structur	n- Stroduct ne - exes nitrid tosyn	ion, types of Metal clusters transition metal e formation at thesis: photol function.	nitrogen fixing in nitrogenase- al complexes of and reduction of osystem-I and							
	UNIT-III microorga redox pro dinitroger dinitroger photosyst UNIT-	I: Nitrogen anisms. Nitroperty - Dir n - nitrogen n to an em-II-chlore IV: Metals	fixante fixant	Ferredoxir ation-Intro hase enzyr gen comple ation via hia. Photolis structur medicine:	n- Str oduct ne - exes nitrid tosyn re and Meta	ion, types of Metal clusters transition metal e formation at thesis: photol function.	nitrogen fixing in nitrogenase- al complexes of and reduction of osystem-I and							
	UNIT-III microorga redox pro dinitroger dinitroger photosyst UNIT- As, Sb	I: Nitrogen anisms. Nitroperty - Dir n - nitrogen n to am em-II-chlore IV: Metals . Therapeuti	rogen nitrog n fixa nmon ophyl in n	Ferredoxir ation-Intro nase enzyr gen comple ation via r iia. Phot lls structur nedicine: ompounds:	n- Str oduct ne - exes nitrid tosyn re and Meta Van	ion, types of Metal clusters transition metal e formation at thesis: photol function. I Toxicity of Fadium-Based I	nitrogen fixing in nitrogenase- al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs;							
	unitroger dinitroger dinitroger photosyst unitroger photosyst Unitroger As, Sb	I: Nitrogen anisms. Nitroperty - Dir n - nitrogen n to an em-II-chlore IV: Metals . Therapeuti m-Containin	rogentitrogent	Ferredoxir ation-Intro nase enzyr gen comple ation via ia. Phot ills structur nedicine: impounds: nticancer	n- Str oduct ne - exes nitrid tosyn re and Meta Van Ager	ion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Fadium-Based Ints.Chelation t	nitrogen fixing in nitrogenase- al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Cancer							
	witroger dinitroger photosyst UNIT-III microorga redox produintroger dinitroger photosyst UNIT-As, Sb Platinu treatme	I: Nitrogen anisms. Nitroperty - Dir n - nitroger n to am em-II-chlore IV: Metals . Therapeuti m-Containing ent. Diagno	rogen nitrog n fixa nmon ophyl in n ic Co ng A ostic	Ferredoxir ation-Intro nase enzyr gen comple ation via iia. Phot lls structur nedicine: impounds: nticancer Agents:	n- Str oduct ne - exes nitrid tosyn re and Meta Van Agei	ion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Fadium-Based Ints.Chelation technetium Improved in the second control of the second control	nitrogen fixing in nitrogenase-al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Canceraging Agents;							
	unitroger dinitroger dinitroger photosyst Unitr- As, Sb Platinu treatme Gadolii	I: Nitrogen anisms. Nitroperty - Dir n - nitroger n to am em-II-chlore IV: Metals . Therapeuti m-Containing ent. Diagno	rogen nitrog n fixa nmon ophyl in n ic Co ng A ostic	Ferredoxir ation-Intro nase enzyr gen comple ation via iia. Phot lls structur nedicine: impounds: nticancer Agents:	n- Str oduct ne - exes nitrid tosyn re and Meta Van Agei	ion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Fadium-Based Ints.Chelation technetium Improved in the second control of the second control	nitrogen fixing in nitrogenase- al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Cancer							
	witroger dinitroger dinitroger photosyst UNIT- As, Sb Platinu treatme Gadolin Field.	I: Nitrogen anisms. Nitroperty - Dir n - nitroger n to am em-II-chlore IV: Metals . Therapeuti m-Containing ent. Diagnonium MRI I	rogen nitrogen n fixa nmon ophyl in n ac Co ng A ostic magi	Ferredoxir ation-Intro nase enzyr gen comple ation via r iia. Phot alls structur nedicine: ompounds: anticancer Agents: ng Agents	n- Str oduct ne - exes nitrid tosyn re and Meta Van Agei Te	ucture and classion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Hadium-Based Ints.Chelation technetium Imagerature and compared to the second compa	nitrogen fixing in nitrogenase-al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Cancer aging Agents; ritical magnetic							
	unitroger dinitroger dinitroger photosyst UNIT- As, Sb Platinu treatme Gadolin Field. UNIT-	I: Nitrogen anisms. Nitroperty - Dir n - nitrogen n to an em-II-chlore IV: Metals . Therapeuti m-Containing ent. Diagnonium MRI I V: Enzyme	rogen nitrog n fixa nmon ophyl in n ic Co ng A ostic magi	Ferredoxir ation-Intro nase enzyr gen comple ation via r iia. Phot ills structur nedicine: ompounds: nticancer Agents: ng Agents	n- Stroduct ne - exes nitrid tosyn re and Meta Van Agei Te to terri	ucture and classion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Fadium-Based Ints.Chelation technetium Imagerature and comproperties -no	nitrogen fixing in nitrogenase-al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Cancer aging Agents; ritical magnetic							
	with the second	I: Nitrogen anisms. Nitroperty - Dir n - nitrogen n to an em-II-chlore IV: Metals . Therapeuti m-Containin ent. Diagno nium MRI I V: Enzyme cation. Enz	rogen nitrog n fixa nmon ophyl in n ic Co ng A ostic magi	Ferredoxir ation-Intro nase enzyr gen comple ation via r ia. Phot ills structur medicine: impounds: inticancer Agents: ing Agents introduction kinetics,	n- Stroduct ne - exes nitrid tosyn re and Weta Van Agen Te to tem	ucture and classion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Hadium-Based Ints. Chelation technetium Imagerature and comproperties -no energy of active.	nitrogen fixing in nitrogenase-al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Canceraging Agents; ritical magnetic omenclature and ivation and the							
	witroger dinitroger dinitroger dinitroger photosyst UNIT- As, Sb Platinu treatme Gadolin Field. UNIT- classifi effects	I: Nitrogen anisms. Nitroperty - Dir n - nitroger n to am em-II-chlore IV: Metals . Therapeuti m-Containing ent. Diagnonium MRI I V: Enzyme cation. Enz of catalysi	rogen nitrogen n fixanmon ophyl in n ic Co ng A ostic magi	Ferredoxir ation-Intro nase enzyr gen complete ation via r gen complete	n- Stroductione - exes nitride to syn re and Meta Van Ager Te term n and free Ment	ucture and classion, types of Metal clusters transition metal e formation at thesis: photological function. I Toxicity of Hadium-Based Ints. Chelation to the chnetium Imagerature and comproperties -no energy of action equation -	nitrogen fixing in nitrogenase-al complexes of and reduction of osystem-I and Hg, Cd, Zn, Pb, Diabetes Drugs; herapy; Cancer aging Agents; ritical magnetic							
	NO, CN- Cytochro	- to Myogl mes-Classifi e oxygen ca	obin icatio	and Hem	oglol ome	oin. Biological a, b and c. Cyt	l redox syst							

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	
_	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Williams, D.R. – Introdution to Bioinorganic chemistry.
Text	2. F.M. Fiabre and D.R. Williams—The Principles of Bioinorganic
	Chemistry, RoyolSoceity of Chemistry, Monograph for Teachers-31
	3. K.F. Purcell and Kotz., Inorganic chemistry, WB Saunders Co.,
	USA.
	4. G.N. Mugherjea and Arabinda Das, Elements of Bioinorganic
	Chemistry - 1993.
	5. R. Gopalan, V. Ramalingam, Concise Coordination Chemistry,
	S. Chand, 2001 .
Reference Books	1. M.Satake and Y.Mido, Bioinorganic Chemistry- Discovery
	Publishing House, New Delhi (1996)
	2. M.N. Hughes, 1982, The Inorganic Chemistry of Biological
	processes, II Edition, Wiley London.
	3. R. W. Hay, Bio Inorganic Chemistry, Ellis Horwood, 1987.
	4. R. M. Roat-Malone, Bio Inorganic Chemistry, John Wiley, 2002.
	5. T. M. Loehr, Iron carriers and Iron proteins, VCH, 1989.
Website and	1. https://www.pdfdrive.com/instant-notes-in-inorganic-chemistry-
e-learning source	the-instant-notes-chemistry-series-d162097454.html
	2. https://www.pdfdrive.com/shriver-and-atkins-inorganic-chemistry-
	5th-edition-d161563417.html
C	Dutasmag (for Marriag with DOs and DCOs)

Students will be able:

CO1: The students will be able to analyses trace elements.

CO2: Students will be able to explain the biological redox systems.

CO3: Students will gain skill in analyzing the toxicity in metals.

CO4: Students will have experience in diagnosis.

CO5: Learn about the nitrogen fixation and photosynthetic mechanism.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	MATERIAL SCIENCE									
Course										
Paper No.	Elective 1	V								
Category	Elective	Year	I	Credits	4	Course				
		Semester	II			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites	Basic kno	wledge of	solid-	-state che	mistr	y				
Objectives of the	To unde	stand the	crys	tal struct	ure,	growth meth	ods and	X-ray		
course	scattering	scattering.								
	_	-				ision propertie	•			
	_		sis of	semicond	luctoi	rs, supercondu	ctivity ma	aterials		
	and magn						_			
						applications of				
			mpor	tance of n	nateri	als used for re	enewable	energy		
G G G	conversio	-				*, ** -	3.633	1.		
Course Outline		·			-	unit cell and				
				-	-	groups and sp		-		
	•		-			law-reciprocal				
		-		•		ohy. Crystal s charge densit	-			
		i-method a			Juon	charge densit	y maps, n	leution		
					c. N	ucleation-equi	ilibrium et	tahility		
		• •				-Low and hi				
				-		l growth meth	-			
	equilibriu			-	•	ate. Single crys				
			-			and sol-gel.		_		
	-		_			hods. Flux tec	_			
						itz and polar	1 1	-		
		nd secondar		-		1				
			•		Opt	ical studies -	Electroma	agnetic		
						reflectance				
	translucer	cy and opa	city.	Types of l	umin	escence – pho	to-, electr	o-, and		
						, Inorganic an				
						lies- Polarisat				
						risation. Effect				
						bes of dielect				
						ical and defect				
		_			-	onductivity: N				
		-			_	netic Field,	• -			
	_			•	-	r, Application				
	_		•	•		p-Application	_			
						l antiferromag				
		_	-			ecording appli				
						perties and appolications, No.		-		
	_	-				Laser waveler		-		
	ruby and		onci al	ois, iiiiali	15 01	Laser waveler	iguis by q	uartz,		
	•		for E	Panowahla	Fna	ergy Conversi	on: Solar	Caller		
	UINII-V:	wiaterials	TOI, I	Schewaple	- DHE	agy Conversi	on. Solar	Cells.		

Extended	Organic, bilayer, bulk heterojunction, polymer, perovskite based. Solar energy conversion: lamellar solids and thin films, dye-sensitized photo voltaic cells, coordination compounds anchored onto semiconductor surfaces - Ru(II) and Os(II) polypyridyl complexes. Photochemical activation and splitting of water, CO2 and N2. Manganese based photo systems for water-splitting. Complexes of Rh, Ru, Pd and Pt - photochemical generation of hydrogen from alcohol. Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. S. Mohan and V. Arjunan, Principles of Materials Science, MJP
Text	Publishers, 2016.
	2. Arumugam, Materials Science, Anuradha Publications, 2007.
	3. Giacavazzo et. al., Fundamentals of Crystallography, International
	Union of Crystallography. Oxford Science Publications, 2010
	4. Woolfson, An Introduction to Crystallography, Cambridge University Press, 2012.
	5. James F. Shackelford and Madanapalli K. Muralidhara, Introduction
	to Materials Science for Engineers. 6th ed., PEARSON Press, 2007.
Reference Books	1.Suggested Readings 1. M.G. Arora, Solid State Chemistry, Anmol
	Publications, New Delhi, 2001.
	2. R.K. Puri and V.K. Babbar, Solid State Physics, S Chand and
	Company Ltd, 2001.
	3 C. Kittel, Solid State Physics, John-Wiley and sons, NY, 1966.
	4. H.P. Meyers, Introductory Solid State Physics, Viva Books Private
	Limited, 1998.
	5. A.R. West, Solid State Chemistry and Applications, John-Wiley and
	sons, 1987.
Website and	1. http://xrayweb.chem.ou.edu/notes/symmetry.html.
e-learning source	2. http://www.uptti.ac.in/classroom-content/data/unit%20cell.pdf .
	3. https://bit.ly/3QyVg2R
	(C M : '41 DO 1 DCO)

Students will be able:

CO1: To understand and recall the synthesis and characteristics of crystal structures, semiconductors, magnets, nanomaterials and renewable energy materials.

CO2: To integrate and assess the structure of different materials and their properties.

CO3: To analyse and identify new materials for energy applications.

CO4: To explain the importance of crystal structures, piezoelectric and pyroelectric materials, nanomaterials, hard and soft magnets, superconductors, solar cells, electrodes, LED uses, structures and synthesis.

CO5: To design and develop new materials with improved property for energy applications.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Course Paper No. Category	Core VII									
-										
	Core	Year	II	Credits	4	Course				
		Semester	III			Code				
Instructional	Lecture	Tutorial		Practice	I	Total	I			
hours per week	4	1	-	7 1 1 11 11 11 11		5				
Prerequisites	•	wledge of c	roan ²	ic chemist	rv					
Objectives of the	Basic knowledge of organic chemistry To understand the molecular complexity of carbon skeletons and the									
course						elative positions				
000100	-		_	-		-	any successful			
	organic s	-				8				
		•	ion a	pproach a	nd ic	dentifying suita	able synthons to			
		cessful orga				, E				
	To learn	the concepts	s of p	ericyclic r	eacti	on mechanisms	S.			
	To gain t	he knowledg	ge of	photocher	nical	organic reaction	ons.			
Course Outline	Prelimina studied, a simple raroutes, k materials converger Seeback, activating approach, synthesis UNIT-II Alternate compound starting Converge concepts and amin synthesis. protective control electron diagrams. [4+4, Careactions. dienes and dienes and diagrams.]	ry Planning nalysis of the tional preceder of the tional proceder of the tional proceder of tio	me conursors diates ting s. sy fic co d brit n of emistr Synth outes onnece and erger Illus element vating tional c Re con ion a onic, clizat igma	mowns and mplex and s, retrosyrs that wo yield of withesis to the diging ele	I unk l intentheticuld alternated ment wanta led p hodo so oach yield is, S hydr f prospection Wood O, I welland by the laternated led p hodo so oach yield is, S hydr f prospection was alipolated for the laternated led p hodo oach yield in the laternated led p hodo oach welland by the laternated led p hodo oach welland by the laternated led p hodo oach was alipolated led p hodo oach yellow oach was alipolated led p hodo oach welland by the laternated led p hodo oach was alipolated led p hodo	related carbon ic analysis, alto be formed, averative method on umpolures. Use of process. Examples of ges of connverted consumptions of alternative method of alternative method of alternative method of alternative control elevation and affic control elevation and are cycloaddition reaction are cycloaddition pening reaction gements: (1,3), trangements. Ice	synthetic system framework into ernate synthetic system framework into ernate synthetic vailable starting ods. Linear Vs ag concepts of otective groups, on retrosynthetic ergent synthesis, and bifunctional diates, available ative methods. If on umpolung carbonyl, thiol deprotection in ements. Use of its. Stereospecific on. ann rules; The and correlation as; [2+2], [2+4], ons. Cheletropic as of conjugated (1,5), (3,3) and onic sigmatropic Regioselectivity,			

	TINITE IV
	UNIT-IV Organic Photochemistry-I: Photochemical excitation:
	Experimental techniques; electronic transitions; Jablonskii diagrams;
	intersystem crossings; energy transfer processes; Stern Volmer
	equation.
	Reactions of electronically excited ketones; $\pi \rightarrow \pi^*$ triplets; Norrish
	type-I and type-II cleavage reactions; photo reductions; Paterno-Buchi
	reactions;
	UNIT-V Organic Photochemistry-I: Photochemistry of α, β -
	unsaturated ketones; cis-trans isomerisation. Photon energy transfer
	reactions, Photo cycloadditions, Photochemistry of aromatic
	compounds; photochemical rearrangements; photo-stationery state; di-
	π -methane rearrangement; Reaction of conjugated cyclohexadienone to
	3,4-diphenyl phenols; Barton's reactions.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. F. A. Carey and Sundberg, Advanced Organic Chemistry, 5thed,
Text	Tata McGraw-Hill, New York, 2003.
	2. J. March and M. Smith, Advanced Organic Chemistry, 5 th ed.,
	John-Wiley and sons, 2007.
	3. R. E. Ireland, Organic synthesis, Prentice Hall India, Goel
	publishing house, 1990.
	4. Clayden, Greeves, Warren, Organic Chemistry, Oxford University
	Press, Second Edition, 2016.
	5. M. B. Smith, Organic Synthesis 3 rd edn, McGraw Hill International
	Edition, 2011.
Reference Books	1. Gill and Wills, Pericyclic Reactions, Chapman Hall, London, 1974.
	2. J.A. Joule, G.F. Smith, Heterocyclic Chemistry, Garden City Press,
	Great Britain, 2004.
	3. W. Caruthers, Some Modern Methods of Organic Synthesis 4 th edn,
	Cambridge University Press, Cambridge, 2007.
	4. H. O. House. Modern Synthetic reactions, W.A. Benjamin Inc,
	1972.
	5. Jagdamba Singh and Jaya Singh, Photochemistry and Pericyclic
*** 1 *4 *	Reactions, New Age International Publishers, New Delhi, 2012.
Website and	1. https://rushim.ru/books/praktikum/Monson.pdf
e-learning source	Outcomes (for Manning with POs and PSOs)

Students will be able:

CO1: To recall the basic principles of organic chemistry and to understand the various reactions of organic compounds with reaction mechanisms.

CO2: To understand the versatility of various special reagents and to correlate their reactivity with various reaction conditions.

CO3: To implement the synthetic strategies in the preparation of various organic compounds.

CO4: To predict the suitability of reaction conditions in the preparation of tailor-made organic compounds.

CO5: To design and synthesize novel organic compounds with the methodologies learnt during the course.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos					

3 - Strong, 2 - Medium, 1 - Low

Title of the	COORD	INATION	CHE	MISTRY	- I					
Course										
Paper No.	Core VII		T			1				
Category	Core	Year	II	Credits	4	Course				
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	-			5				
Prerequisites		wledge of i								
Objectives of the	To gain insights into the modern theories of bonding in coordination									
course	compounds. To learn various methods to determine the stability constants of									
			netho	ds to det	ermi	ne the stabilit	ty constants of			
	complexe		2000	tmast som	مامدند	on diagnama a	and muddiet the			
						in the complex	and predict the			
				_	-	-	fer mechanistic			
		of reactions				ciccion trans	ici incenanistic			
						nd square plana	r complexes			
Course Outline							ds: Crystal field			
						-	dral and square			
	_	-					ffecting 10Dq -			
						-	gy for high spin			
	_			-		_	splitting - site			
	selections in spinels and antispinels - Jahn Teller distortions and its									
	consequences. Molecular Orbital Theory and energy level diagrams concept of Weak and strong fields, Sigma and pi bonding in octahedral,									
	_				_	a and pi bondin	ig in octahedral,			
		anar and teti		-						
							erm states for d			
	ions - cl	naracteristic	s of	d-d trans	sition	s - charge tra	ansfer spectra -			
	selection	rules for e	electro	onic spect	tra -	Orgel correlat	tion diagrams -			
	Sugano-T	anabe ener	gy le	vel diagra	ıms -	nephelauxetic	series - Racha			
	parameter	and calcula	ation	of inter-el	ectro	nic repulsion p	arameter.			
	UNIT-II	: Stability	and	l Magne	tic p	roperty of tl	he complexes:			
		•		_	_	- •	of complexes,			
	Thermod	ynamic aspe	ects o	of comple	x for	mation, Stepw	ise and overall			
							al factors and			
					-		composition of			
		•				•	half method,			
							Ion exchange			
							riation method			
	,	, -				•	orbit coupling,			
					magn	etic moments,	quenching of			
		agnetic mon			eme	of substitution	n reactions of			
							rt and Labile			
							nistic pathways			
	_						of octahedral			
						• •	e rate of water			
	Complexe	~, Classific	at1011	or moun	1011	. Judge off the	. 1410 01 174101			

	replacement reaction and their correlation to Crystal Field Activation Energy; Substitution reactions in square planar complexes: Trans effect, theories of trans effect and applications of trans effect in synthesis of square planar compounds; Kurnakov test.
	UNIT-V: Electron Transfer reactions in octahedral complexes: Outer sphere electron transfer reactions and Marcus-Hush theory; inner sphere electron transfer reactions; nature of the bridging ligand in inner
	sphere electron transfer reactions, flatter of the straight figure in fine sphere electron transfer reactions. Photo-redox, photo-substitution and photo-isomerisation reactions in complexes and their applications.
Extended Professional	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a part of internal component only,	to be solved (To be discussed during the Tutorial hours)
Not to be included in the external	
examination question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic
Text	Chemistry – Principles of structure and reactivity, 4th Edition,
Text	Pearson Education Inc., 2006
	2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition,
	Pearson Education Inc., 2008
	3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993.
	4. B. N. Figgis, Introduction to Ligand Fields, Wiley Eastern Ltd, 1976.
	5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann,
	Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
Reference Books	
Reference Books	1. Keith F. Purcell and John C. Kotz, Inorganic Chemistry, Saunders Publications, USA, 1977.
	2. Peter Atkins and Tina Overton, Shriver and Atkins' Inorganic
	Chemistry, 5th Edition, Oxford University Press, 2010.
	3. Basic Inorganic Chemistry, F. A. Cotton, G. Wilkinson, P. L. Guas, John Wiley, 2002, 3rd edn.
	4. Concepts and Models of Inorganic Chemistry, B. Douglas, D.
	McDaniel, J. Alexander, John Wiley, 1994, 3rd edn.Inorganic Chemistry, D. F. Shriver, P. W. Atkins, W. H. Freeman and Co, London, 2010.
Website and	https://ocw.mit.edu/courses/5-04-principles-of-inorganic-chemistry-ii-
e-learning source	fall-2008/pages/syllabus/
c-ical lillig source	ian zooorpages/synaous/

Students will be able:

CO1: Understand and comprehend various theories of coordination compounds.

CO2: Understand the spectroscopic and magnetic properties of coordination complexes.

CO3: Explain the stability of complexes and various experimental methods to determine the stability of complexes.

CO4: Predict the electronic transitions in a complex based on correlation diagrams and UV-visible spectral details.

CO5: Comprehend the kinetics and mechanism of substitution reactions in octahedral and square planar complexes.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos		- • •		_ , •	- / •

3 – Strong, 2 – Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTE	RY PRAC	TIC	AL				
Course	O 137									
Paper No.	Core IX	T 7		Q 114	T 4	T &				
Category	Core	Year	II	Credits	4	Course				
		Semester	III			Code				
Instructional	Lecture			Practice		Total				
hours per week	-	1	4			5				
Prerequisites	Basic knowledge of physical chemistry									
Objectives of the	To understand the principle of conductivity experiments through									
course		conductometric titrations.								
	To evaluate the order of the reaction, temperature coefficient, and activation energy of the reaction by following pseudo first order									
		n energy o	i the	reaction	by	following pse	eudo first order			
	kinetics.									
	To const	must the mb	.000	licamom o	£ 4	o commonant	avatam fammina			
		-		_		-	system forming			
	composit	_	sonu	and m	iu ii	s entectic te	mperatures and			
	*		etice (of adeornt	ion o	f oxalic acid or	n charcoal			
							gen ion, charge			
				0.	_	•	by computational			
	calculation		illa ivi	laxwell 5	зресс	a distribution c	by computational			
Course Outline		Conductivi	ity Ex	meriment	te					
Course outline			•	-		ance of a strong	g electrolyte &			
		erification of				ince of a strong	g electrolyte &			
				-		aw & Determin	nation of pKa of			
		ak acid.	be wa	ia s Dilati	OII D		nation of pita of			
			ohlra	usch's La	w for	r weak electrol	vtes.			
						ingly soluble sa				
						veak acid vs N				
		pitation titra	,	_			,			
		•				•				
	UNIT-II:	Kinetics								
	1. Study	the kinetic	s of	acid hyd	rolys	is of an ester	r, determine the			
					-		energy of the			
	react									
	2. Study	the kinetic	s of	the reacti	on b	etween aceton	e and iodine in			
	acidi	c medium	by ha	lf-life me	thod	and determine	e the order with			
	respe	ect to iodine	and a	acetone.						
		I: Phase dia								
					simp	ole binary syste	em			
		alene-phena								
	_	phenone- dip	pheny	l amine						
	Adsorpti			_						
	-				oal &	determination	n of surface area			
		ch isotherm	•							
Extended						m various com				
Professional	examinat	ions UPSC	/ TRE	3 / NET/ U	JGC-	CSIR / GATE	/TNPSC others			

Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
Text	Viva Books, New Delhi, 2009.
	2. Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.
	3. V.D. Athawale and Parul Mathur, Experimental Physical Chemistry,
	New Age International (P) Ltd., New Delhi, 2008.
	4. E.G. Lewers, Computational Chemistry: Introduction to the Theory
	and Applications of Molecular and Quantum Mechanics, 2 nd Ed.,
	Springer, New York, 2011.
Reference Books	1. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	2. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	3. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
	4. Shailendra K Sinha, Physical Chemistry: A laboratory Manual,
	Narosa Publishing House Pvt, Ltd., New Delhi, 2014.
	5. F. Jensen, Introduction to Computational Chemistry, 3 rd Ed., Wiley-
	Blackwell.
Website and	https://web.iitd.ac.in/~nkurur/2015-
e-learning source	16/Isem/cmp511/lab_handout_new.pdf
Course Learning	Outcomes (for Manning with POs and PSOs)

Students will be able:

CO1: To recall the principles associated with various physical chemistry experiments.

CO2: To scientifically plan and perform all the experiments.

CO3: To observe and record systematically the readings in all the experiments.

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students' efficiency for societal developments.

	00101:24Ppg (002:2012:0:0:0:1:1:0:0:1:1)									
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	ANALY	ΓICAL INS	TRU	JMENTA'	TIO	N TECHNIQU	UES
Course							
Paper No.	Core XII						
Category	Core	Year	II	Credits	4	Course	
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice	1	Total	
hours per week	_	1	4			5	
Prerequisites							
Objectives of the	To design	chromatogra	phic 1	nethods for	iden	tification of spe	cies.
course	_					trumental metho	
							turbidimetry and
		ty measurem					
						nic and organic	
	-	e constituents	s in m	aterials usi	ng er	nission and abso	orption techniques.
Course Outline	UNIT-I:						
						onductance of	
						ying Ostwald d	
						nstant of the ac	
						onductance of	
							ning the validity
		_		•		g law at high d	
			ric tit	ration of a	mix	ture of HCl and	d CH ₃ COOH Vs
		aOH.					
						Cl Vs NaOH.	
						OONa Vs HC	
		otentiometri aOH	c titra	ation of a i	nixtu	ire of HCl and	CH₃COOH Vs
	7. D	etermination	n of p	Ka of wea	k aci	d by EMF met	hod.
	8. Po	otentiometri	c titra	ation of FA	AS V	s K ₂ Cr ₂ O ₇	
		otentiometri					
		otentiometri gNO _{3.}	c titra	ation of a 1	nixtu	re of Chloride	and Iodide Vs
	1	_	n of t	he pH of b	uffer	solution by El	MF method
		ing Quinhy		-		-	
		• •				gar in the prese	nce of acid by
		olarimetric r				1	•
	UNIT-II:						
	1. Es	stimation of	Fe, C	Cu and Ni	by co	olorimetric met	thod.
					-	photometric m	
	3. D	eterminatio	n of s	spectropho	otome	etrically the mo	ole ratio of the
	fe	rrithiocyana	te co	mplex and	l equ	ilibrium consta	ant for the
	cc	mplex form	ation	l .	_		
							nide present in
		e given solu				-	
		etermination clic voltam			n co	efficient of feri	ricyanide using
	_		-		d red	ox potential of	ferri-
						eyelic voltamm	
		-		-	_	ate present in	<u> </u>
		olution using			-	-	inc given
	SO	ration using	; rich	neiomeni	ıuıl	mannetel.	

	8. Estimation of the amount of nitrate present in the given solution
	using spectrophotometric method.
	9. Heavy metal analysis in textiles and textile dyes by AAS
	10. Determination of caffeine in soft drinks by HPLC
	11. Analysis of water quality through COD, DO, BOD
	measurements. 12. Assay of Riboflavin and Iron in tablet formulations by
	spectrophotometry
	13. Estimation of chromium in steel sample by spectrophotometry14. Determination of Stern-Volmer constant of Iodine quenching by fluorimetry
	15. Determination of ascorbic acid in real samples using Differential Pulse Voltammetry and comparing with specifications
	16. Separation of (a) mixture of Azo dyes by TLC (b) mixture of metal ions by Paper chromatography
	17. Estimation of chlorophyll in leaves and phosphate in waste
	water by colorimetry.
	18. Estimation of Fe(II) by 1,10 phenonthroline using
	spectrophotometry
	UNIT-III: Interpretation and identification of the given spectra of
	various organic compounds arrived at from the following instruments
	1.UV-Visible
	2.IR
	3.Raman
	4.NMR
	5.ESR
	6.Mass etc.,
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others
Component (is a	to be solved
part of internal	(To be discussed during the Tutorial hours)
component only,	
Not to be included	
in the external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. Vogel's Text book of Practical Organic Chemistry, 5th Ed,
Text	ELBS/Longman, England, 2003.
	2. G. H. Jeffery, J. Bassett, J. Mendham and R. C. Denney, Vogel's
	Textbook of Quantitative Chemical Analysis; 6th ed., ELBS, 1989.
	3. J. D. Woollins, <i>Inorganic Experiments</i> ; VCH: Weinheim,
	1995.
	4. B. Viswanathan and P.S.Raghavan, Practical Physical Chemistry,
	Viva
	Books, New Delhi, 2009.
	5.Sundaram, Krishnan, Raghavan, Practical Chemistry (Part II), S.
	Viswanathan Co. Pvt., 1996.

Reference Books	1. N. S. Gnanapragasam and G. Ramamurthy, Organic Chemistry –
	Labmanual, S. Viswanathan Co. Pvt. Ltd, 2009.
	2. J. N. Gurtu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 2011.
	3. J. B. Yadav, Advanced Practical Physical Chemistry, Goel
	Publishing House, 2001.
	4. G.W. Garland, J.W. Nibler, D.P. Shoemaker, Experiments in
	Physical Chemistry, 8th edition, McGraw Hill, 2009.
	5. J. N. Gurthu and R. Kapoor, Advanced Experimental Chemistry, S.
	Chand and Co., 1987.
Website and	1. https://bit.ly/3QESF7t
e-learning source	1. III.ps.//oii.1y/5QE51*/t
	2. https://bit.ly/3QANOnX

Students will be able:

CO1: To recall the principles associated with various inorganic organic and physical chemistry experiments

CO2: To scientifically plan and perform all the experiments

CO3: To observe and record systematically the readings in all the experiments

CO4: To calculate and process the experimentally measured values and compare with graphical data.

CO5: To interpret the experimental data scientifically to improve students efficiency for societal developments.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	PHARMOCOGNOSY AND PHYTOCHEMISTRY										
Course											
Paper No.	Elective '	V									
Category	Elective	Year	II	Credits	4	Course					
		Semester	III			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4	1	-			5					
Prerequisites	Basic kno	Basic knowledge of chemistry									
Objectives of the	To develo	op the know	ledge	of natura	l pro	ducts, biologic	cal functions and				
course	pharmaco	ological uses	S.								
	To develo	To develop knowledge on primary and secondary metabolites and their									
	sources.										
			-	pts of isc	olatio	n methods an	nd separation of				
		compounds		1 .		., ,					
						cosides and m					
			guio	ieiines o	I W	HO and dif	ferent sampling				
Course Outline	technique		~~~	and Ct	on do	udization of	Harbal dwage				
Course Outline							Herbal drugs: and Source of				
							ultures. Study of				
							nic acid pathway				
	_	tate pathy					Crude drugs.				
		-	•	•		•	ampling of crude				
				_		-	foreign matter,				
	0		_				General chemical				
	tests.					C					
	UNIT-II:	Extractio	n Te	chniques	: Ge	neral method	ls of extraction,				
	types – i	maceration,	Dec	oction, pe	ercola	tion, Immers	ion and soxhlet				
	extraction	1.									
		-					ion, supercritical				
	_				ted e	xtraction. Fact	tors affecting the				
		extraction p									
						enoids and					
							and separation				
							calyptol. Volatile				
						-	Classifications of Structure uses.				
				,		taraxasterol:					
		logical appl		•	168,	taraxasteror.	Structure and				
					kalni	ds. Occurren	nce, function of				
		_		_			tion, Preliminary				
							ods of structural				
	_		_				mical properties,				
				-			perties and uses.				
							lycosides: Basic				
		•				_	litative analysis.				
					-		diac glycosides-				
		_	-				es- Diosgenin,				
	hecogenii	n. Plant pi	gmen	ts: Occur	rence	e and gener	ral methods of				

	tructure determination, isolation and synthesis of quercetin and									
•	yanidin chloride. Marine drugs -Selected Drug Molecules:									
	Cardiovascular active substances, Cytotoxic compounds, antimicrobial ompounds, antibiotic compounds, Anti-inflammatory agents. Marine									
co										
	oxins.									
Extended Q	Questions related to the above topics, from various competitive									
	xaminations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others									
Component (is a to	be solved									
part of internal (7	To be discussed during the Tutorial hours)									
component only,										
Not to be included										
in the external										
examination										
question paper)										
Skills acquired K	Knowledge, Problem solving, Analytical ability, Professional									
from this course C	Competency, Professional Communication and Transferable skills.									
Recommended 1.	. Gurdeep R Chatwal (2016), Organic chemistry of Natural									
Text	products, Volume I&II, 5th edition, Himalaya publishing House.									
2.	S.V.Bhat, B.A. Nagasampagi, M.Sivakumar (2014), Chemistry of									
N	Natural Products, Revised edition, Narosa Publishers.									
Reference Books 1.	. Jeffrey B. Harborne (2012), Phytochemical methods: A Guide to									
M	Modern Techniques of Plant Analysis, 4th edition, Indian reprint,									
$ S_1 $	pringer.									
2.	. Ashutoshkar (2007), Pharmacognosy and Pharmacobiotechnology, 2									
no	d edition, New age international (P) limited, New Delhi.									

Students will be able:

CO1: To recall the sources of natural medicines and analysis of crude drugs.

CO2: To understand the methods of evaluation based on various parameters.

CO3: To analyze the isolated drugs

CO4: To apply various techniques to discover new alternative medicines.

CO5: To evaluate the isolated drugs for various pharmacological activities

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course	3.0	3.0	3.0	3.0	3.0
Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	BIOMOL	ECULES A	ND I	HETERO	CYC	CLIC COMPO	DUNDS			
Course										
Paper No.	Elective V	1				T				
Category	Elective	Year	II	Credits	4	Course				
		Semester	III			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4	1	<u> </u>			5				
Prerequisites		vledge of ch				1.	0.1.1			
Objectives of			ncept	s and biol	logic	al importance	of biomolecules			
the course	and natural products. To explain various of functions of carbohydrates, proteins, nucleic acids,									
	To explain various of functions of carbohydrates, proteins, nucleic acids, steroids and hormones.									
				of alkalo	de or	nd terpenoids.				
							ales and natural			
	products.	ite the situ	cture	uctermin	ation	or biomoree	ares and natural			
	1	and constr	net tl	ne structu	re of	new alkaloid	s and terpenoids			
		ent methods		ic structu		iie vv ainaioia.	s una terpenotas			
Course Outline				metabolis	sm (of carbohydra	ates: Definition,			
		-				-	onosaccharides:			
							glucose, fructose			
), physical and			
							ccharides: Ring			
							and chemical			
							charides: Starch,			
			ose -	- structu	re a	nd properties	, glycolysis of			
	carbohydra	ites.								
	UNIT-II:	Steroids a	nd H	[ormones:	Ste	roids-Introduct	tion, occurrence,			
	nomenclati	are, config	guratio	on of s	subst	ituents. Diels	' hydrocarbon,			
							gical importance,			
							ts, physiological			
	_	•				-	ne. Hormones-			
							- androgens and			
	_						sol structure and			
						aline and thyro				
							d purification of			
				amination			. Catabolism of amination and			
							eic acids. Amino			
	_			-			the synthesis of			
				-			cyclic base and			
							to nucleotides.			
							A, Watson-Crick			
		d phase syn								
							d purification of			
							d purification of . Catabolism of			
				amination			amination and			
					•		eic acids. Amino			
	_			-			the synthesis of			
				-			cyclic base and			
	11deleoblac	o anoci (01110	11411011, 10	, 1 1 1 1 U		cyclic case and			

	nucleoside modification, conversion of nucleoside to nucleotides. Primary and secondary structure of RNA and DNA, Watson-Crick model, solid phase synthesis ofoligonucleotides.
	UNIT-V: Fused Ring Heterocyclic Compounds: Benzofused five membered rings: Indole, isoindole, benzofuran and benzothiophene, Preparation and properties. Benzofused six membered rings: Quinoline and isoquinoline: Preparation by ring closure reactions, Reactions: Mechanism of electrophilic and nucleophilic substitutions, oxidation and reduction reactions.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired from this course Recommended	Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. T. K Lindhorst, Essentials of Carbohydrate Chemistry and Biochemistry,
Text	 Wiley VCH, North America,2007. I. L. Finar, Organic Chemistry Vol-2, 5th edition, Pearson Education Asia, 1975. V. K. Ahluwalia and M. Goyal, Textbook of Heterocyclic compounds, Narosa Publishing, New Delhi,2000. M. K. Jain and S. C. Sharma, Modern Organic Chemistry, Vishal Publishing Co., Jalandhar, Delhi, 2014. V. K. Ahluwalia, Steroids and Hormones, Ane books pub., New Delhi,2009.
Reference Books	I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson Education Asia,2004. Pelletier, Chemistry of Alkaloids, Van Nostrand Reinhold Co,2000. Shoppe, Chemistry of the steroids, Butterworthes,1994. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal & aromatic plants, Vol 1 and Vol 10, Ukkaz Publications, Hyderabad,2004. M. P. Singh. and H. Panda, Medicinal Herbs with their formulations, Daya Publishing House, Delhi,2005.
Website and e-learning source	ps://www.organic-chemistry.org/ ps://www.studyorgo.com/summary.php ps://www.clutchprep.com/organic-chemistry

Students will be able:

CO1: To understand the basic concepts of biomolecules and natural products.

CO2: To integrate and assess the different methods of preparation of structurally different biomolecules and natural products.

CO3: To illustrate the applications of biomolecules and their functions in the metabolism of living organisms.

CO4: To analyse and rationalise the structure and synthesis of heterocyclic compounds.

CO5: To develop the structure of biologically important heterocyclic compounds by different methods.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	COORD	INATION	СНЕ	MISTRY	- II						
Course											
Paper No.	Core X		1		ı						
Category	Core	Year	II	Credits	4	Course					
		Semester	IV			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4	1	-			5					
Prerequisites	Basic kno	wledge of i	norga	anic chemi	stry						
Objectives of the	To recog	gnize the f	unda	mental co	oncep	ots and structi	ural aspects of				
course	organometallic compounds.										
		To learn reactions of organometallic compounds and their catalytic									
	behaviou										
		•	et the	structure	of c	coordination co	ompounds using				
		opic tools.									
					_	n coordination	•				
		-				selected comp					
Course Outline		·		0		-	Classification of				
							and 16 electron				
							e: Ziese's salt),				
		•		•	-		yclopentadienyl				
	-					_	n metallocenes;				
					•	•	diagram of CO;				
			_	_			oach of M-CO				
	_	-					nergistic effect				
	,					* *	rbonyl clusters:				
		-	_	-		-	Structures based				
						y or Wade's ru					
				•		0	ic compounds: lition, reductive				
							on reaction and				
		•				•	drogenation of				
							ins using cobalt				
			-			•	olefin (Wacker				
		-		_			eaction, cyclo-				
							ysts, Monsonto				
	process.			,	6		, ,				
		: Inorgani	c sp	ectroscop	v -I	IR spectrosc	opy: Effect of				
		0	_	_	•		onato, sulphito,				
				-	•	-	complexes; IR				
	spectrosc	-	carbo	-	npou		spectroscopy-				
	Introduct			•	-		spectroscopy in				
							onal molecules,				
		lar nuclei- e		_		-					
					_		erminologies: g				
	and A par	ameters-de	finitio	on, explan	ation	and factors aff	ecting g and A;				
	Application	ons of ESR	to	coordinatio	on co	mpounds with	one and more				
	than one	unpaired	electi	ons – hy	perfi	ne and secon	dary hyperfine				
					_		Mn(II), Fe(II),				
	, , ,		*			•	copper(II) and				
	$[(NH_3)_5C$	o-O ₂ -Co(NI	$[I_3)_5]^5$	Mossb	auer	spectroscopy	Mossbauer				

	 Concepts and Models of Inorganic Chemistry, B. Douglas, D. McDaniel, J. Alexander, John Wiley, 1994, 3rd edn. K. F. Purcell, J. C. Kotz, Inorganic Chemistry; Saunders: Philadelphia, 1976. R. S. Drago, Physical Methods in Chemistry; Saunders: Philadelphia, 1977.
	2. P Gütlich, E Bill, A X Trautwein, Mossbauer Spectroscopy and Transition Metal Chemistry: Fundamentals and Applications, 1 st edition, Springer-Verlag Berlin Heidelberg, 2011.
Keierence Books	1. Crabtree, Robert H. The Organometallic Chemistry of the Transition Metals. 3rd ed. New York, NY: John Wiley, 2000.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper) Skills acquired from this course Recommended Text Reference Books	transitions, PES of homonuclear diatomic molecules (N ₂ , O ₂) and heteronuclear diatomic molecules (CO, HCl) and polyatomic molecules (H ₂ O, CO ₂ , CH ₄ , NH ₃) – evaluation of vibrational constants of the above molecules. Koopman's theorem- applications and limitations. Optical Rotatory Dispersion – Principle of CD and ORD; Δ and λ isomers in complexes, Assignment of absolute configuration using CD and ORD techniques. Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours) Knowledge, Problem solving, Analytical ability, Professional Competency, Professional Communication and Transferable skills. 1. J E Huheey, EA Keiter, RL Keiter and OK Medhi, Inorganic Chemistry – Principles of structure and reactivity, 4th Edition, Pearson Education Inc., 2006 2. G L Meissler and D ATarr, Inorganic Chemistry, 3rd Edition, Pearson Education Inc., 2008 3. D. Bannerjea, Co-ordination Chemistry, TATA Mcgraw Hill, 1993. 4. B D Gupta and A K Elias, Basic Organometallic Chemistry: Concepts, Syntheses and Applications, University Press, 2013. 5. F. A. Cotton, G. Wilkinson.; C. A. Murillo; M. Bochmann, Advanced Inorganic Chemistry, 6th ed.; Wiley Inter-science: New York, 1988.
	effect, Recoil energy, Mossbauer active nuclei, Doppler shift, Isomer shift, quadrupole splitting and magnetic interactions. Applications of Mössbauer spectra to Fe and Sn compounds. UNIT-V: Photo Electron Spectroscopy: Theory, Types, origin of fine structures - shapes of vibrational fine structures - adiabatic and vertical

Website and	https://archive.nptel.ac.in/courses/104/101/104101100/
e-learning source	

Students will be able:

CO1: Understand and apply 18 and 16 electron rule for organometallic compounds

CO2: Understand the structure and bonding in olefin, allyl, cyclopentadienyl and carbonyl containing organometallic compounds

CO3: Understand the reactions of organometallic compounds and apply them in CO4: understanding the catalytic cycles

CO5: Identify / predict the structure of coordination complexes using spectroscopic tools such as IR, NMR, ESR, Mossbauer and optical rotatory dispersion studies to interpret the structure of molecules by various spectral techniques.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 - Strong, 2 - Medium, 1 - Low

Title of the	PHYSIC	AL CHEM	ISTI	RY-II							
Course											
Paper No.	Core XI										
Category	Core	Year	II	Credits	4	Course					
		Semester	IV			Code					
Instructional	Lecture	Tutorial	Lab	Practice		Total					
hours per week	4	1	-			5					
Prerequisites	Basic kno	wledge of p	ohysio	cal chemis	try						
Objectives of the	To understand the essential characteristics of wave functions and need										
course	for the quantum mechanics. To know the importance of quantum mechanical models of particle in a										
	_	l rotor and h									
		the quan	tum	mechanics	s to	hydrogen and	l polyelectronic				
	systems.										
		•		•		1	e point groups.				
	-		itiona	l modes,	hybri	idization using	he concepts of				
	group the										
Course Outline				•			e, Particle wave				
		_		-			perties of wave				
		-					ed, Orthogonal,				
							n properties of				
	-			-			body radiation,				
	Postulate		nyurc	igen speci	ruiii.	Need for quan	ntum mechanics,				
			C ol	radingar	****	agustion Ti	ma indopendent				
	_		s, SCI	irodinger	wave	e equation, 11	me independent				
	and time	dependent									
	and three molecular wave equal significan	e-dimension r system, fi uation and nce. Rigid l	ial, d ree p solut Rotor	egeneracy articles, ration, anha -wave equ	, app ing s irmor iation	plication to linguistry systems. Harm nicity, force c	wo dimensional near conjugated onic Oscillator-constant and its a, calculation of ales.				
	Hydroger solutions, distribution wave fun Perturbat field me Helium determina UNIT-IV operation C _n , C _{nh} , I symmetry	n atom and I radial and on functions ction, variation method thod, Hohe atom-electronics. 7: Group to s, classification, Dnh, Dnd y operation	pplications to Hydrogen and Poly electron atoms: In and hydrogen like ions, Hamiltonian-wave equation and dial and angular functions, representation of radial nections. Approximation methods –variation methods: trial, variation integral and application to particle in 1D box. method - first order applications. Hatrefock self-consistent Hohenberg-Kohn theorem and Kohn-Sham equation, electron spin, paulis exclusion principle and Slater coup theory: Groups, sub groups, symmetry elements, assification-axial and non-axial. Dihedral point groups-mh, Dnd, Td and Oh. Matrix representation and classes of perations, reducible irreducible and direct product. The Great orthogonality theorem – irreducible								
	-				_	-	character table				
	_	C_{2h} , C_{3v} and					character table				
			- 211 P	8-0 ap							

	UNIT-V: Applications of quantum and group theory: Hydrogen Molecule-Molecular orbital theory and Heitler London (VB) treatment, Energy level diagram, Hydrogen molecule ion; Use of linear variation function and LCAO methods. Electronic conjugated system:Huckel method to Ethylene butadiene, cyclopropenyl, cyclo butadiene and Benzene. Applications of group theory to molecular vibrations, electronic spectra of ethylene.
Extended Professional Component (is a part of internal component only, Not to be included in the external examination question paper)	Questions related to the above topics, from various competitive examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to be solved (To be discussed during the Tutorial hours)
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Reference Rooks	 R.K. Prasad, Quantum Chemistry, New Age International Publishers, New Delhi, 2010, 4th revised edition. F. A. Cotton, Chemical Applications of Group Theory, John Wiley & Sons, 2003, 2nd edition. A. Vincent, Molecular Symmetry and Group Theory. A Programmed Introduction to Chemical Applications, John and Willy & Sons Ltd., 2013, 2nd Edition. T. Engel & Philip Reid, Quantum Chemistry and Spectroscopy, Pearson, New Delhi, 2018, 4th edition. G. K. Vemulapalli, Physical Chemistry, Prentice Hall of India Pvt. Ltd. 2001. 6. D.A. McQuarrie, Quantum Chemistry, Viva Books PW. Ltd, 2013, 2nd edition.
Reference Books	 N. Levine, Quantum Chemistry, Allyn& Bacon Inc, 1983, 4th edition. D.A. McQuarrie and J. D. Simon, Physical Chemistry, A Molecular Approach, Viva Books Pvt. Ltd, New Delhi, 2012. R. P. Rastogi & V. K. Srivastava, An Introduction to Quantum Mechanics of Chemical Systems, Oxford & IBH Publishing Co., New Delhi, 1999. R.L. Flurry. Jr, Symmetry Group Theory and Chemical applications, Prentice Hall. Inc, 1980 J. M. Hollas, Symmetry in Molecules, Chapman and Hall, London,

Website and	1. https://nptel.ac.in/courses/104101124
e-learning source	2. https://ipc.iisc.ac.in/~kls/teaching.html

Students will be able:

CO1: To discuss the characteristics of wave functions and symmetry functions.

CO2: To classify the symmetry operation and wave equations.

CO3: To apply the concept of quantum mechanics and group theory to predict the electronic structure.

CO4: To specify the appropriate irreducible representations for theoretical applications.

CO5: To develop skills in evaluating the energies of molecular spectra.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to POs	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	CHEMIST	TRY OF NAT	'URA	L PRODUC	CTS		
Course							
Paper No.	Elective V	II					
Category	Core	Year	II	Credits	4	Course	
		Semester	IV			Code	
Instructional	Lecture	Tutorial	Lab	Practice		Total	
hours per week	4	1	-			5	
Prerequisites	Basic know	ledge of gene	ral ch	emistry			
Objectives of	To learn th	ne basic conce	epts a	nd biologic	al im	portance of b	iomolecules
the course	and natural	products.					
	To explain	various of fur	nction	s of carboh	ydrate	es, proteins, nu	icleic acids,
	steroids and	d hormones.					
		and the function					
	To elucida	te the structu	are de	etermination	of	biomolecules	and natural
	products.						
			t the	structure of	f new	alkaloids and	d terpenoids
	from differ	ent methods.					
Course Outline	IINIT-I: A	lkaloids: Intro	oducti	on occurrei	ice c	lassification, is	solation and
						ethods of struc	
				, 0		rmination of C	
						ne, Belladine, (,
	-	ine, Papaverin		-	<i>C W</i> 11111	,,	o o cumo,
		Terpenoids			occi	urrence, Ison	rene rule,
		-				ning structure	,
						ne, Squalene,	
		-				rism, Structur	_
		sis of β-carote	_			,	,
						ocyanines: Int	roduction to
						thods of sy	
	anthocyani	nes. Cyanidine	e chlo	ride: structu	re an	d determinatio	n. Flavones:
						d determinatio	
	and flavono	oids. Quercetin	n: Stru	cture deterr	ninati	on and import	ance.
	UNIT-IV:	Purines and	Stero	ids: Purine	s: Int	roduction, occ	currence and
	isolation o	f purines. Cla	assific	ation and	specti	ral properties	of steroids.
	biological	importance, Si	tructu	re and synth	esis	of Uric acid a	nd Caffeine.
	Steroids: S	teroids-Introd	uction	, occurrenc	e, no	menclature, c	onfiguration
						istry, classific	_
	•					r reactions	
	cholesterol	-occurrence,	tests,	physiolog	ical	activity, bios	ynthesis of
	cholesterol	from squalene	e.				

	UNIT-V: Natural Dyes: Occurrence, classification, isolation,
	purification, properties, colour and constitution. Structural determination
	and synthesis of indigoitin and alizarin.
Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 1,
Text	Himalaya Publishing House, Mumbai, 2009.
	2. G. K. Chatwal, Organic Chemistry on Natural Products, Vol. 2,
	Himalaya Publishing House, Mumbai, 2009.
	3. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 1,
	Goel Publishing House, Meerut, 1997.
	4. O. P. Agarwal, Chemistry of Organic Natural Products, Vol. 2,
	Goel Publishing House, Meerut, 1997.
	5. I. L. Finar, Organic Chemistry Vol-2, 5 th edition, Pearson
	Education Asia, 1975.
Reference	1. I. L. Finar, Organic Chemistry Vol-1, 6 th edition, Pearson
Books	Education Asia,2004.
	2. Pelletier, Chemistry of Alkaloids, Van Nostrand
	Reinhold Co,2000.
	3. Shoppe, Chemistry of the steroids, Butterworthes, 1994.
	4. I. A. Khan, and A. Khanum. Role of Biotechnology in medicinal
	& aromatic plants, Vol 1 and Vol 10, Ukkaz Publications,
Website and	Hyderabad,2004. https://sites.google.com/site/chemistryebookscollection02/home/organic-
	
e-learning	<u>chemistry/organic</u>
source	O 4 (C M 1 141 DO 1 DOO)

Students will be able:

CO1: To understand the biological importance of chemistry of natural products.

CO2: To scientifically plan and perform the isolation and characterization of synthesized natural products.

CO3: To elucidate the structure of alkaloids, terpenoids, carotenoids, falvanoids and anthocyanins.

CO4: To determine the structure of phytochemical constituents by chemical and physical methods.

CO5: To interpret the experimental data scientifically to improve biological activity of active components.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 – Strong, 2 – Medium, 1 - Low

CO/PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Title of the	POLYME	R CHEMIST	RY							
Course										
Paper No.	Elective V	1	1	1	1	T	,			
Category	Core	Year	II	Credits	4	Course				
		Semester	IV			Code				
Instructional	Lecture	Tutorial	Lab	Practice		Total				
hours per week	4 1 - 5									
Prerequisites		ledge of gene								
Objectives of		e basic concep								
the course						tions and kinet				
		and the impor	rtance	of industria	al pol	lymers and the	eir synthetic			
	uses.	.1 1 .		. 1						
		ne the molecu								
C O III	_	the degradatio		•			• 4•			
Course Outline					_	t and its Det				
	_	-			-	lymers; cohes				
						methods, Tg				
		-				cular mass o				
		_				Weight averag mination of high				
		and methods.		ulai weigili	ucter	illination of m	gn porymers			
				rinetics of I	Polvn	nerization: Cl	hain growth			
					•	al polymeriza	_			
						n. Reaction ki				
		ymerization, E					metics. Step			
						d Polymer D	egradation:			
		-		•		interfacial and	_			
				-		on, Thermal	-			
		• •				o stabilizers, S	•			
	phase polyi	-	-							
	UNIT-IV:	Industrial Po	olyme	rs: Preparat	tion c	of fibre formin	g polymers,			
	elastomeric	material.	Thern	noplastics:	Poly	ethylene, Po	lypropylene,			
	polystyrene	e, Polyacrylor	nitrile	, Poly Vin	ıyl C	Chloride, Poly	tetrafluoro			
		nylon and				etting Plastic				
						ers: Natural				
						ene. Conductin				
						iles, poly pher				
			•	•	-	nethacrylate,	* *			
		s, polyurethan	es, p	olyureas, po	olyeth	nylene and po	olypropylene			
	glycols.	D.I. D.		•	1	. D.1	A 1.1%			
		•				ing: Polymer				
	· ·					ilizers, fire ret				
		_		•	_	g, die casting, o				
	<u> </u>			•		ng and reinfo	_			
		Thermofoamir	_	_		lysis and c compounds, ba	catalysts –			
	-				-	compounds, ba cous catalysis				
	centres.	si Calalysis,	v arrau	num, neter	Jenie	ous catalysis	and active			
	contros.									
	<u> </u>									

Extended	Questions related to the above topics, from various competitive
Professional	examinations UPSC / TRB / NET/ UGC-CSIR / GATE /TNPSC others to
Component (is a	be solved
part of internal	(To be discussed during the Tutorial hours)
component	
only, Not to be	
included in the	
external	
examination	
question paper)	
Skills acquired	Knowledge, Problem solving, Analytical ability, Professional
from this course	Competency, Professional Communication and Transferable skills.
Recommended	1. V.R. Gowariker, <i>Polymer Science</i> , Wiley Eastern, 1995.
Text	2. G.S. Misra, <i>Introductory Polymer Chemistry</i> , New Age
	International (Pvt) Limited, 1996.
	3. M.S. Bhatnagar, A Text Book of Polymers, vol-I & II, S.Chand
	& Company, New Delhi, 2004.
Reference	1. F. N. Billmeyer, <i>Textbook of Polymer Science</i> , Wiley
Books	Interscience, 1971.
	2. A. Kumar and S. K. Gupta, Fundamentals and Polymer Science and
	Engineering, Tata McGraw-Hill, 1978.

Students will be able:

CO1: To understand the bonding in polymers.

CO2: To scientifically plan and perform the various polymerization reactions.

CO3: To observe and record the processing of polymers.

CO4: To calculate the molecular weight by physical and chemical methods.

CO5: To interpret the experimental data scientifically to improve the quality of synthetic polymers.

CO-PO Mapping (Course Articulation Matrix)

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO 1	S	S	S	S	M	S	S	S	S	M
CO 2	M	S	S	S	S	M	S	S	S	S
CO 3	S	S	M	S	S	S	S	M	S	S
CO 4	M	S	S	S	S	M	S	S	S	S
CO 5	M	S	M	S	S	M	S	M	S	S

3 - Strong, 2 - Medium, 1 - Low

CO /PO	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	3	3
CO2	3	3	3	3	3
CO3	3	3	3	3	3
CO4	3	3	3	3	3
CO5	3	3	3	3	3
Weightage	15	15	15	15	15
Weighted percentage of Course Contribution to Pos	3.0	3.0	3.0	3.0	3.0

3 – Strong, 2 – Medium, 1 - Low

Skill Enhancement Courses

Skill Enhancement Courses are chosen to keep in pace with the latest developments in the academic / industrial front and provides flexibility of choice by the stakeholders / institutions.

Skill Enhancement Courses) SEC (Practical based paper)

(Any one from the following)

- 1. Computational Chemistry
- 2. Preparation of Consumer products
- 3. Origin lab
- 4. Industrial Chemistry
- 5. Research Tools and Techniques

Value Added Courses

A wide variety of Value Added Courses which are conducted after class hours during semester II and III. These courses are conducted by experts to help students stand apart from the rest in the job market by adding further value to their resume. They are mostly independent to each type of the fields.

List of Value Added Course

- 4. Dyes and Pigments
- 5. Polymorphism and Drug Discovery
- 6. Green Energy and Fuels

1. DYES & PIGMENTS

Course Outcome:

After completion of the course student will able to understand

To know the uses of dyes in different areas.

To analyse the future prospects of the dyestuff industry

Unit I: Fundamental of dyes: General, Important chemical chromophores of dyes, Dyes Class

for principle applications, Description of individual of class and synthesis of some

commercial dyes.

Unit II: Dying processes of textiles: Pretreatment of textile fibres, dyeing methods for

various textiles, Textile finishes and Textile auxiliaries.

Non textile dyes: Paper & Leather, Biomedical, food & cosmetics dyes.

Unit III: Dyes for electro optical application: Molecular Orbital design, Synthesis and

characteristics of functional dyes. Near infrared absorption (NIR) dyes: Introduction, Cyanine

type chromophores, donar-acceptor chromophores.

Miscellaneous dyes: Hair, Laser, Indicators, Security inks, Coloured smokes and camouflage

colors

Unit IV: Definition of pigments, examples, properties of pigments, difference between dyes

and pigments. Definition of Lakes and Toners, Non mutagenic dyes, colourants for high

technology Fluorescent Brightening agents.

Unit V: Health and Environmental Hazards of Synthetic Dyes and their remediation

processes

Impact of the textile and leather dye industry on the environment with special emphasis on

water pollution.

Health Hazards: Toxicity of dyes with respect to food colors

Growth and development of the Indian Dyestuff Industry

Text Books & References

- 1. Advances in colour chemistry series Vol.3 Modern colorants: synthesis and structure Edited by A.T. Peters and H.S. Freeman Blackie Academic & Professional (1995)
- 2. Colour Chemistry: Synthesis, Properties and applications of Organic dyes and pigments Heinrich Zollinger, VCH, Germany (1987)
- 3. Developments in Chemistry and technology of organic dyes Edited by: J. Griffiths, Blackwell Scientific Publications (1984)
- 4. Organic Chemistry in colour P.F.Gordon, P.Gregory, Springer-Verlag (1983)
- 5. Infrared Absorbing Dyes Edited by Masaru Matsuoka, Plenum Press (1990)
- 6. The Chemistry of Synthetic dyes and pigments by H.A.Lubs, Reinhold Publication (1955)
- 7. The Chemistry of Synthetic dyes Vol.I-IX Edited by K. Venkataraman Academic Press (1971)
- 8. Textile Auxiliaries By J. W. Batty. The production and applications of fluorescent Brighteing Agents Milos Zahradnik, john Wiley & Sons. 1982
- 9. Venkatraman, K., Chemistry of Synthetic Dyes, Vol. I-VIII, Academic Press, 1972
- 10. Lubs, H.A., Krieger, Robert, E., The Chemistry of Synthetic Dyes and Pigments, Publishing
- 11. Company, NY, 1995
- 12. Shenai, V.A., Chemistry of Dyes & Principles of Dyeing, Sevak Publications, 1973

2. POLYMORPHISM AND DRUG DISCOVERY

Course Outcome

- 1. Set the scene to make use of the wide range of career options open to chemistry post graduates in the field of drug development.
- 2. achieve an understanding and appreciation of the crucial role of chemistry in the development of drugs and the to employ the principles in the design of new drugs

Unit I

Polymorphism: Definition, Significance of polymorphism in drug product performance, packaging/conformational polymorphism, thermodynamics of polymorphs, enatiotropy/monotropy, concept of transition temperature, Burger and Ramberger rule.

Implications of polymorphism in pharmaceutical development: Regulatory concerns related to polymorphism, introduction to latest regulatory position on polymorphism.

Unit II

Crystallization process: Molecular aggregation events in crystallization, energetic of crystallization, enthalpy entropy balance, types of nucleation, Ostwald's step rule, experimental protocols for polymorph screening

Unit III

Drugs - Definition, historical evolution, classification of drugs, nomenclature of drugs. General idea regarding the milestones in drug research. Sources of Drugs. Routes of drug administration.

Unit IV

Pharmacodynamics: Principles, site and mechanism of drug action (Nervous system, Histamines and Antihistamines, Cardiovascular Drugs), Drug Receptor, Classification of receptors, Drug-Receptor interactions, Theories of Drug receptor interactions. Determination of B-max and Kd by transforming data with hill plot and Scatchard plot, above concepts with special reference to opioid, adrenergic and GABA energic receptors, GPCRS receptors.

Unit V

Dose response relationship, Therapeutic index, combined effects of drugs and factors modifying drug action. LD50, ED50, LC50, EC50, MIC and MEC. Adverse Drug Reactions. Pharmacovigilance, ADR monitoring.

Reference

1. Harry G. Brittain, Polymorphism in Pharmaceutical Solids, 2009

- 2. Angeline and Mark Zarkrzewski, Solid State Characterization of Pharmaceuticals, 2005.
- 3. Richard A. Storey, Ingvar Ymén, Solid State Characterization of Pharmaceuticals John Wiley & Sons, 2011
- 4. R.B. Silverman, The Organic Chemistry of Drug Design and Drug Action, Academic Press. 3rd edn., 2014
- 5. E. Stevens, Medicinal Chemistry-The Modern Drug Discovery Process, Pearson, 2014.
- 6. R.S. Satoskar, S. D. Bhandarkar, Pharmacology and Pharmacotherapeutics, Popular Prakeshan, 21st edn., 2009.
- 7. S. C. Rastogi, N. Mendiratta, P. Rastogi, Bioinformatics Methods and Applications, Prentice Hall of India, 2004.
- 8. Graham L. Patrick, An Introduction to Medicinal Chemistry, Oxford University Press, 1995.
- 9. A. Gringuage, Introduction to Medicinal Chemistry, Wiley-VCH, 1997
- P. Bhatia, Data Mining and Data Warehousing: Principles and Practical Techniques, Cambridge, 2019.

3. GREEN ENERGY AND FUELS

Course Outcome:

After completion of the course student will able

- 1. To know the different types of Renewable energy sources.
- 2. To understand the advance strategies and technologies in energy

Unit 1-Renewable energy sources (6 Hrs)

Overview of renewable energy sources, Importance of green energy and fuels, Environmental impact of conventional energy sources. Environmental impacts, sustainability considerations, and life cycle assessment of green energy systems.

Unit 2- Solar and Wind Energy Systems (6 Hrs)

Photovoltaic (PV) systems, Solar thermal energy, Solar power generation technologies, Solar panel installation, wind turbine technology, aerodynamics, and power generation maintenance and applications.

Unit 3. Biomass Energy (6 Hrs)

Biomass sources and types, Biomass conversion technologies (biofuels and biogas), Biomass applications. Biomass as a renewable energy resource: types, availability, and sustainability considerations.

Unit 4. Fuel Cells and Hydrogen Energy (6 Hrs)

Hydrogen as a clean fuel: production methods, storage, and safety considerations, Principles, and operation of fuel cells for energy generation. Fuel cell technology and types and Fuel cell applications.

Unit. 5. Energy Storage Technologies (6 Hrs)

Importance of energy storage in green energy systems, Battery technologies, types of batteries, supercapacitors and its type application of energy storage devices, Integration of energy storage devices in grid-scale and distributed systems.

References

- **1.** G. Rai, Non-Conventional Sources of Energy, 30th Reprint, Khanna Publishers, New Delhi, 2011.
- **2.** "Renewable Energy: Power for a Sustainable Future" by Godfrey Boyle (Year: 2012, Publisher: Oxford University Press)
- **3.** M. Stiebler, Wind energy systems for electric power generation, Springer Science & Business Media2008.

- **4.** "Solar Engineering of Thermal Processes" by John A. Duffie and William A. Beckman (Year: 2013, Publisher: Wiley)
- **5.** "Wind Energy Explained: Theory, Design and Application" by James F. Manwell, Jon G. McGowan, and Anthony L. Rogers (Year: 2010, Publisher: Wiley)
- **6.** "Biomass for Renewable Energy, Fuels, and Chemicals" by Donald L. Klass (Year: 1998, Publisher: Academic Press)
- 7. "Fuel Cell Systems Explained" by James Larminie and Andrew Dicks (Year: 2017, Publisher: Wiley)
- **8.** "Hydrogen and Fuel Cells: A Comprehensive Guide" by Rebecca L. Wagner (Year: 2017, Publisher: CRC Press)
- **9.** "Energy Storage Systems: Operation and Control" by Francisco C. Giraldez and Christos A. Frangopoulos (Year: 2014, Publisher: CRC Press)
- **10.** A.F. Zobaa, Energy Storage: Technologies and Applications, BoD–Books on Demand2013
- 11. "Battery Technology Handbook" by H.A. Kiehne (Year: 2003, Publisher: CRC Press)
- **12.** "Supercapacitors: Materials, Systems, and Applications" by François Béguin and Elzbieta Frackowiak (Year: 2013, Publisher: Wiley)
- **13.** "Energy Storage for Power Systems" by Abdelkrim Benchaib (Year: 2011, Publisher: IET)