PUBLICATION IN SCI JOURNALS
1. Selvakumar, K., Beautlin Jemi, J., A topological property of a hypergraph assigned to commutative rings, J. Algebra App., 24 (3) (2025) 2550093. https://doi.org/10.1142/S0219498825500938.
2. Jesili, E., Selvakumar, K., and Tamizh Chelvam, T., Genus, and book thickness of reduced cozero-divisor graphs of commutative rings, Rev. Un. Mat. Argentina, 67 (2) (2024), 455-473, https://doi.org/10.33044/revuma.3906.
3. Jesili, E., Selvakumar, K., and Tamizh Chelvam, T., On the genus of reduced cozero-divisor graph of commutative rings, Soft Computing, 27 (2) (2023), 657-666. (IF: 3.732)
4. Selvakumar, K., Ramanathan, V., Selvaraj, C., On the genus of dot product graph of a commutative ring, Indian J. Pure and App. Math., 54 (2) (2023), 558-567. (IF: 0.337)
5. Selvakumar, K., Mohd Nasim, Nedeem Ur Rehman, On the planarity, genus and crosscap of new extension of zero-divisor graph of commutative rings, AKCE Inter. J. of Graphs and Combin., 19 (1) (2022), 61—68.
6. Selvakumar, K., Arunkumar, G., Gangaeswari, P., The wiener index of the zero-divisor graph of a finite commutative ring, Discrete Applied Mathematics, 311 (2022), 72--84 (IF: 1.139)
7. Selvakumar, K., Amritha, V. C., Ideal based hypergraph of a commutative ring, AKCE Inter. J. of Graphs and Combin., 19 (1) (2022), 18 -- 23.
8. Selvakumar, K., and Subajini, M., The ideal-based k zero-divisor hypergraph of commutative rings, Algebra Colloquium, 28 (4) (2021), 655--672. (IF: 0.484)
9. Selvakumar, K., Ramanathan, V., A Haouaoui, On the k-zero divisor hypergraph of commutative rings, ARS Combinatoria, 150 (2020), 261-279 (IF: 0.210) (MR4250182)
10. Selvakumar, K., and Ramanathan, V., On the genus of the k-annihilating ideal hypergraph of commutative ring, Indian J. Pure and Applied Mathematics, 50 (2) (2019), 461—475. (IF: 0.337) (MR3954537)
11. Selvakumar, K., and Subbulakshmi, P., On the genus of Cayley graph of ideals of commutative ring, ARS Combinatoria, CXLVII (2019), 215--236. (IF: 0.186) (MR4221175)
12. Selvakumar, K., A note on the annihilating ideal graph of commutative rings, ARS Combinatoria, CXXXVII (2018), 113--122. (IF: 0.186) (MR3790965)
13. Selvakumar, K., M. Subajini, M. J. Nikmehr, Finite commutative ring with genus two essential graph, J. Algebra App., 16 (2) (2018), 1850121 (11 pages). (IF: 0.6) (MR3813695)
14. Tamizh Chelvam, T., Selvakumar, K., and Ramanathan, V., On the Cayley sum graph of ideals of commutative ring, J. Algebra App., 16 (2) (2018), 1850125 (14 pages). (IF: 0.6), (MR3813699)
15. Selvakumar, K., and Subajini, M., Commutative rings with genus two annihilator graphs, Comm. Algebra , 46 (1) (2018), 28--37. (IF: 0.481) (MR3764840)
16. Selvakumar, K., and Subajini, M., Classification of rings with toroidal Jacobson graph, Czechosolvak Mathematical Journal, 66 (2) (2016), 30--316. (IF: 0.364) (MR3519603)
17. Selvakumar, K., and Ramanathan, V., Classification of nonlocal rings with genus one 3-zero-divisor hypergraphs, Comm. Algebra, 45 (1) (2016), 275--284. (IF: 0.429) (MR3556571)
PUBLICATION IN NON-SCI JOURNALS
18. Selvakumar, K., Petchiammal, N., On metric dimension of nil-graphs of ideals of commutative rings, Discrete Math. Algor. Appl., 16 (6) (2024), 2350078.
19.Selvakumar, K., , P Gangaeswari, Some application of multiplicative Zagreb index, J. Analysis, 32 (2024), 3091—3099.
20.Selvakumar, K., and J. Beautlin Jemi, Domination in k-zero-divisor hypergraph of some class of commutative rings, Palestine Journal of Mathematics, 12 (Special Issue II) (2023), 26–33
21. Mohd Nasim, Nedeem Ur Rehman, Selvakumar, K., On the Genus of Strong Annihilating-ideal Graph of Commutative Rings, Asian-European Journal of Mathematics, (2023) 2350166 (16 pages).
22. Mohd Nasim, Nedeem Ur Rehman, Selvakumar, K., On the genus of annihilator intersection graph of commutative rings, Algebraic Structures App.,., 11 (1) (2024), 25—36.
23. Mohd Nasim, Nedeem Ur Rehman, Selvakumar, K., On the genus of extended zero-divisor graph of commutative rings, Rendiconti del Circolo Matematico di Palermo Series 2, (2022).
24.Selvakumar, K., Anusha, N., On the ideal-base zero divisor graph of commutative rings, Discrete Mathematics, Algorithms and Applications, 16 (1), 2250190 (2024).
Disclaimer: The details in the webpages on view more option are fully maintained by the faculty members concerned. The university is not responsible for any data provided in the view more option in faculty profile.