PUBLICATION IN SCI JOURNALS
1. Selvakumar, K., Beautlin Jemi, J., A topological property of a hypergraph assigned to commutative rings, J. Algebra App., (2023), https://doi.org/10.1142/S0219498825500938.
2. Jesili, E., Selvakumar, K., and Tamizh Chelvam, T., Genus, and book thickness of reduced cozero-divisor graphs of commutative rings, Rev. Un. Mat. Argentina, 67 (2) (2024), 455-473, https://doi.org/10.33044/revuma.3906.
3. Jesili, E., Selvakumar, Kand Tamizh Chelvam, T., On the genus of reduced cozero-divisor graph of commutative rings, Soft Computing, 27 (2) (2023), 657-666. (IF: 3.732)
4. Selvakumar, K., Ramanathan, V., Selvaraj, C., On the genus of dot product graph of a commutative ring, Indian J. Pure and App. Math., 54 (2) (2023), 558-567. (IF: 0.337)
5. Selvakumar, K., Mohd Nasim, Nedeem Ur Rehman, On the planarity, genus and crosscap of new extension of zero-divisor graph of commutative rings, AKCE Inter. J. of Graphs and Combin., 19 (1) (2022), 61—68.
6. Selvakumar, K., Arunkumar, G., Gangaeswari, P., The wiener index of the zero-divisor graph of a finite commutative ring, Discrete Applied Mathematics, 311 (2022), 72--84 (IF: 1.139)
7. Selvakumar, K., Amritha, V. C., Ideal based hypergraph of a commutative ring, AKCE Inter. J. of Graphs and Combin., 19 (1) (2022), 18 -- 23.
8. Selvakumar, K., and Subajini, M., The ideal-based k zero-divisor hypergraph of commutative rings, Algebra Colloquium, 28 (4) (2021), 655--672. (IF: 0.484)
9. Selvakumar, K., Ramanathan, V., A Haouaoui, On the k-zero divisor hypergraph of commutative rings, ARS Combinatoria, 150 (2020), 261-279 (IF: 0.210) (MR4250182)
10. Selvakumar, K., and Ramanathan, V., On the genus of the k-annihilating ideal hypergraph of commutative ring, Indian J. Pure and Applied Mathematics, 50 (2) (2019), 461—475. (IF: 0.337) (MR3954537)
11. Selvakumar, K., and Subbulakshmi, P., On the genus of Cayley graph of ideals of commutative ring, ARS Combinatoria, CXLVII (2019), 215--236. (IF: 0.186) (MR4221175)
12. Selvakumar, K., A note on the annihilating ideal graph of commutative rings, ARS Combinatoria, CXXXVII (2018), 113--122. (IF: 0.186) (MR3790965)
13. Selvakumar, K., M. Subajini, M. J. Nikmehr, Finite commutative ring with genus two essential graph, J. Algebra App., 16 (2) (2018), 1850121 (11 pages). (IF: 0.6) (MR3813695)
14. Tamizh Chelvam, T., Selvakumar, K., and Ramanathan, V., On the Cayley sum graph of ideals of commutative ring, J. Algebra App., 16 (2) (2018), 1850125 (14 pages). (IF: 0.6), (MR3813699)
15. Selvakumar, K., and Subajini, M., Commutative rings with genus two annihilator graphs, Comm. Algebra , 46 (1) (2018), 28--37. (IF: 0.481) (MR3764840)
16. Selvakumar, K., and Subajini, M., Classification of rings with toroidal Jacobson graph, Czechosolvak Mathematical Journal, 66 (2) (2016), 30--316. (IF: 0.364) (MR3519603)
17. Selvakumar, K., and Ramanathan, V., Classification of nonlocal rings with genus one 3-zero-divisor hypergraphs, Comm. Algebra, 45 (1) (2016), 275--284. (IF: 0.429) (MR3556571)
Disclaimer: The details in the webpages on view more option are fully maintained by the faculty members concerned. The university is not responsible for any data provided in the view more option in faculty profile.